Skip to main content

Symmetry and Topology of the Configuration Space and Quantization

  • Chapter

Abstract

In this contribution certain group-theoretical and topological aspects of quantum theory are reviewed. We consider systems localized on configuration spaces being homogeneous spaces or differentiable manifolds. Our approach to quantum kinematics is based on systems of imprimitivity in the case of homogeneous spaces, and their generalization to manifolds, which we call quantum Borel kinematics. We show that quantum kinematics can be classified in terms of global invariants-quantum numbers of group-theoretical or topological origin. Finally, quantum mechanics of a charged particle in the magnetic field of the Dirac monopole is presented as an example illustrating the interplay of group representation theory and non-trivial topology. The exposition is based on our joint work1,2,3,4 with B. Angermann and P. Štoviček, and Ref. 5.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. D. Doebner, J. Tolar, Quantum mechanics on homogeneous spaces, J. Math. Phys. 16 (1975), 975–984.

    Article  Google Scholar 

  2. H. D. Doebner, J. Tolar, On global properties of quantum systems, in: “Symmetries in Science”, Proc. Einstein Centennial Celebration Symposium at Carbondale, Ill., B. Gruber and R. S. Millman, eds., Plenum Publ. Co., New York (1980), 475–486.

    Google Scholar 

  3. B. Angermann, H. D. Doebner, J. Tolar, Quantum kinematics on smooth manifolds, in: “Non-Linear Partial Differential Operators and Quantization Procedures”, Proceedings of a workshop held at Clausthal, 1981, S. I. Andersson and H. D. Doebner, eds., Lecture Notes in Mathematics, Vol. 1037, Springer-Verlag, Berlin (1983), 171–208.

    Google Scholar 

  4. P. StVovicek, J. Tolar, Topology of configuration manifold and quantum mechanics (in Czech), Acta Polytechnica-Prâce CVUT v Praze, No. 6 (Iv, 1), (1984), 37–75.

    Google Scholar 

  5. P. Stovicek, Dirac monopole derived from representation theory, Suppl.

    Google Scholar 

  6. Rend. Circ. Mat. Palermo, tier. II, No. 3, (1984), 301–306.

    Google Scholar 

  7. G. W. Mackey, “Induced Representations and Quantum Mechanics”, Benjamin, New York (1968).

    Google Scholar 

  8. G. W. Mackey, “The Theory of Induced Representations”, mimeographed lecture notes, University of Chicago Press, Chicago (1955).

    Google Scholar 

  9. V. S. Varadarajan, “Geometry of Quantum Theory, Vol. 2-Quantum Theory of Covariant Systems”, Van Nostrand Reinhold Co., New York (1970).

    Google Scholar 

  10. J. von Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann. 104 (1931), 570–588.

    Google Scholar 

  11. P. Angermann, Uber Quantisierungen lokalisierter Systeme: ?hysikalisch interpretierbare mathematische Modelle, Ph. D. Thesis, Technische Universität, Clausthal (1983).

    Google Scholar 

  12. B. Kostant, Quantization and unitary representations: Part I. Prequantization, in: Lecture Notes in Mathematics, Vol. 170, Springer-Verlag, New York (1970), 87–208.

    Google Scholar 

  13. I. E. Segal, Quantization of nonlinear systems, J. Math. Phys. 1 (1960), 468–488.

    Article  Google Scholar 

  14. H. Poincaré, Comptes Rendus 125 (1896), 530.

    Google Scholar 

  15. M. Fierz, Helv. Phys. Acta 17 (1944), 27.

    Google Scholar 

  16. P. A. M. Dirac, Quantized singularities in the electromagnetic field, Proc. Roy. Soc. (London) 133 (1931), 60.

    Article  Google Scholar 

  17. W. Greub, H. R. Petry, Minimal coupling and complex line bundles, J. Math. Phys. 16 (1975), 1347–1551.

    Article  Google Scholar 

  18. T. T. Wu, C. N. Yang, Concept of nonintegrable phase factors and global formulation of gauge fields, Phys. Rev. 12 (1975), 3845–3857.

    Article  Google Scholar 

  19. T. T. Wu, C. N. Yang, Dirac monopole without strings: monopole harmonics, Nucl. Phys 107 (1976), 365–380.

    Article  Google Scholar 

  20. C. Martin, A mathematical model for the Aharonov-3ohm effect, Lett. Math. Phys. 1 (1976), 155–163.

    Google Scholar 

  21. H. D. Doebner, P. Štoviček, J. Tolar, Quantizations of the system of two indistinguishable particles, Czech. J. Phys. B31 (1981), 1240–1248.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doebner, H.D., Tolar, J. (1986). Symmetry and Topology of the Configuration Space and Quantization. In: Gruber, B., Lenczewski, R. (eds) Symmetries in Science II. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1472-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1472-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1474-6

  • Online ISBN: 978-1-4757-1472-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics