Symmetry and Topology of the Configuration Space and Quantization

  • H. D. Doebner
  • J. Tolar


In this contribution certain group-theoretical and topological aspects of quantum theory are reviewed. We consider systems localized on configuration spaces being homogeneous spaces or differentiable manifolds. Our approach to quantum kinematics is based on systems of imprimitivity in the case of homogeneous spaces, and their generalization to manifolds, which we call quantum Borel kinematics. We show that quantum kinematics can be classified in terms of global invariants-quantum numbers of group-theoretical or topological origin. Finally, quantum mechanics of a charged particle in the magnetic field of the Dirac monopole is presented as an example illustrating the interplay of group representation theory and non-trivial topology. The exposition is based on our joint work1,2,3,4 with B. Angermann and P. Štoviček, and Ref. 5.


Gauge Transformation Homogeneous Space Canonical System Generalize Momentum Complex Line Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. D. Doebner, J. Tolar, Quantum mechanics on homogeneous spaces, J. Math. Phys. 16 (1975), 975–984.CrossRefGoogle Scholar
  2. 2.
    H. D. Doebner, J. Tolar, On global properties of quantum systems, in: “Symmetries in Science”, Proc. Einstein Centennial Celebration Symposium at Carbondale, Ill., B. Gruber and R. S. Millman, eds., Plenum Publ. Co., New York (1980), 475–486.Google Scholar
  3. 3.
    B. Angermann, H. D. Doebner, J. Tolar, Quantum kinematics on smooth manifolds, in: “Non-Linear Partial Differential Operators and Quantization Procedures”, Proceedings of a workshop held at Clausthal, 1981, S. I. Andersson and H. D. Doebner, eds., Lecture Notes in Mathematics, Vol. 1037, Springer-Verlag, Berlin (1983), 171–208.Google Scholar
  4. 4.
    P. StVovicek, J. Tolar, Topology of configuration manifold and quantum mechanics (in Czech), Acta Polytechnica-Prâce CVUT v Praze, No. 6 (Iv, 1), (1984), 37–75.Google Scholar
  5. 5.
    P. Stovicek, Dirac monopole derived from representation theory, Suppl.Google Scholar
  6. Rend. Circ. Mat. Palermo, tier. II, No. 3, (1984), 301–306.Google Scholar
  7. 6.
    G. W. Mackey, “Induced Representations and Quantum Mechanics”, Benjamin, New York (1968).Google Scholar
  8. 7.
    G. W. Mackey, “The Theory of Induced Representations”, mimeographed lecture notes, University of Chicago Press, Chicago (1955).Google Scholar
  9. 8.
    V. S. Varadarajan, “Geometry of Quantum Theory, Vol. 2-Quantum Theory of Covariant Systems”, Van Nostrand Reinhold Co., New York (1970).Google Scholar
  10. 9.
    J. von Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann. 104 (1931), 570–588.Google Scholar
  11. 10.
    P. Angermann, Uber Quantisierungen lokalisierter Systeme: ?hysikalisch interpretierbare mathematische Modelle, Ph. D. Thesis, Technische Universität, Clausthal (1983).Google Scholar
  12. 11.
    B. Kostant, Quantization and unitary representations: Part I. Prequantization, in: Lecture Notes in Mathematics, Vol. 170, Springer-Verlag, New York (1970), 87–208.Google Scholar
  13. 12.
    I. E. Segal, Quantization of nonlinear systems, J. Math. Phys. 1 (1960), 468–488.CrossRefGoogle Scholar
  14. 13.
    H. Poincaré, Comptes Rendus 125 (1896), 530.Google Scholar
  15. 14.
    M. Fierz, Helv. Phys. Acta 17 (1944), 27.Google Scholar
  16. 15.
    P. A. M. Dirac, Quantized singularities in the electromagnetic field, Proc. Roy. Soc. (London) 133 (1931), 60.CrossRefGoogle Scholar
  17. 16.
    W. Greub, H. R. Petry, Minimal coupling and complex line bundles, J. Math. Phys. 16 (1975), 1347–1551.CrossRefGoogle Scholar
  18. 17.
    T. T. Wu, C. N. Yang, Concept of nonintegrable phase factors and global formulation of gauge fields, Phys. Rev. 12 (1975), 3845–3857.CrossRefGoogle Scholar
  19. 18.
    T. T. Wu, C. N. Yang, Dirac monopole without strings: monopole harmonics, Nucl. Phys 107 (1976), 365–380.CrossRefGoogle Scholar
  20. 19.
    C. Martin, A mathematical model for the Aharonov-3ohm effect, Lett. Math. Phys. 1 (1976), 155–163.Google Scholar
  21. 20.
    H. D. Doebner, P. Štoviček, J. Tolar, Quantizations of the system of two indistinguishable particles, Czech. J. Phys. B31 (1981), 1240–1248.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • H. D. Doebner
    • 1
  • J. Tolar
    • 2
  1. 1.A. Sommerfeld Institute for Mathematical PhysicsTechnical University of ClausthalClausthalF.R. Germany
  2. 2.Faculty of Nuclear Science and Physical EngineeringCzech Technical UniversityBřehová 7Czechoslovakia

Personalised recommendations