Skip to main content

On an Initial-Value Method for Quickly Solving Volterra Integral Equations: A Review

  • Chapter
Solution Methods for Integral Equations

Part of the book series: Mathematical Concepts and Methods in Science and Engineering ((MCSENG,volume 18))

  • 409 Accesses

Abstract

A method of converting nonlinear Volterra equations to systems of ordinary differential equations is compared with a standard technique, the method of moments, for linear Fredholm equations. The method amounts to constructing a Galerkin approximation when the kernel is either finitely decomposable or approximated by a certain Fourier sum. Numerical experiments from recent work by Bownds and Wood serve to compare several standard approximation methods as they apply to smooth kernels. It is shown that, if the original kernel decomposes exactly, then the method produces a numerical solution which is as accurate as the method used to solve the corresponding differential system. If the kernel requires an approximation, the error is greater, but in examples seems to be around 0.5% for a reasonably small number of approximating terms. In any case, the problem of excessive kernel evaluations is circumvented by the conversion to the system of ordinary differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Volterra, V., Lecons sur la Theorie Mathematique de la Lutte pour la Vie, Gauthier Villars, Paris, France, 1931.

    Google Scholar 

  2. Volterra, E., Vibrations of Elastic Systems Having Hereditary Characteristics, Journal of Applied Mechanics, Vol. 14, pp. 363–371. 1950.

    Google Scholar 

  3. Miller, R. K., On Volterra’s Population Equation, SIAM Journal on Applied Mathematics, Vol. 14, pp. 446–452, 1966.

    Article  Google Scholar 

  4. Bownds, J. M., and Cushing, J. M., On the Behavior of Predator—Prey Equations with Hereditary Terms, Mathematical Biosciences, Vol. 26, pp. 47–54, 1975.

    Article  Google Scholar 

  5. Noble, B., The Numerical Solution of Nonlinear Integral Equations and Related Topics, Nonlinear Integral Equations, Edited by P. M. Anselone, University of Wisconsin Press, Madison, Wisconsin, 1964.

    Google Scholar 

  6. Linz, P., Linear Multistep Methods for Volterra Integrodifferential Equations, Journal of the Association for Computing Machinery, Vol. 16, pp. 295–301, 1969.

    Article  Google Scholar 

  7. Taverini, L., One-Step Methods for the Numerical Solution of Volterra Functional Differential Equations, SIAM Journal On Numerical Analysis, Vol. 8, pp. 786–795, 1975.

    Article  Google Scholar 

  8. Taverini, L., Linear Multi-Step Methods for the Numerical Solution of Volterra Functional Differential Equations, Applicable Analysis, Vol. 1, pp. 169–185, 1973.

    Article  Google Scholar 

  9. Bownds, J. M., and Wood, B., On Numerically Solving Non-linear Volterra Equations with Fewer Computations, SIAM Journal on Numerical Analysis, Vol. 13, pp. 705–719, 1976.

    Article  Google Scholar 

  10. Garey, L., Solving Nonlinear Second Kind Volterra Equations by Modified Increment Methods, SIAM Journal on Numerical Analysis, Vol. 12, pp. 501508, 1975.

    Google Scholar 

  11. Weiss, R., Product Integration for the Generalized Abel Equation, Mathematics of Computation, Vol. 26, pp. 177–190, 1972.

    Article  Google Scholar 

  12. Weiss, R., and Anderssen, R. S., A Product Integration Method for a Class of Singular First Kind Volterra Equations, Numerische Matematik, Vol. 18, pp. 442–456, 1972.

    Article  Google Scholar 

  13. Anderssen, R. S., Dehoog, F., and Weiss, R., On the Numerical Solution of Brownian Motion Processes, Journal of Applied Probability, Vol. 10, pp. 409–418, 1973.

    Article  Google Scholar 

  14. Dehoog, F., and Weiss, R., High Order Methods for Volterra Integral Equations of the First Kind, SIAM Journal on Numerical Analysis, Vol. 10, pp. 647–664, 1973.

    Article  Google Scholar 

  15. Malina, L., A-Stable Methods of High Order for Volterra Integral Equations, Aplikace Matematiky, Vol. 20, pp. 336–344, 1975.

    Google Scholar 

  16. El-Tom, M. E. A., Efficient Computing Algorithms for Volterra Integral Equations of the Second Kind, Computing, Vol. 14, pp. 153–166, 1975.

    Article  Google Scholar 

  17. Goursat, E., Determination de la Resolvante d’une d’Equation, Bulletin des Sciences et Matematiques, Vol. 57, pp. 144–150, 1933.

    Google Scholar 

  18. Bownds, J. M., and Cushing, J. M., Some Stability Criteria for Linear Systems of Volterra Integral Equations, Funkcialaj Ekvacioj, Vol. 15, pp. 101–117, 1972.

    Google Scholar 

  19. Bownds, J. M., and Cushing, J. M., A Representation Formula for Linear Volterra Integral Equations, Bulletin of the American Mathematical Society, Vol. 79, pp. 532–536, 1973.

    Article  Google Scholar 

  20. Cerha, J., A Note on Volterra Integral Equations with Degenerate Kernels, Commentari Mathematica Universita Carolinae, Vol. 13, pp. 659–672, 1972.

    Google Scholar 

  21. Casti, J., Kalaba, R., and Ueno, S., A Cauchy System for a Class of Nonlinear Fredholm Integral Equations, Applicable Analysis, Vol. 3, pp. 107–115, 1973.

    Article  Google Scholar 

  22. Kantorovich, L., and Krylov, V., Approximation Methods of Higher Analysis, John Wiley and Sons (Interscience Publishers), New York, New York, 1965.

    Google Scholar 

  23. Bownds, J. M., On Solving Weakly Singular Volterra Equations of the First Kind with Galerkin Approximations, Mathematics of Computation, Vol. 30, pp. 747–757, 1976.

    Article  Google Scholar 

  24. Bownds, J. M., and Wood, B., A Note on Solving Volterra Integral Equations with Convolution Kernels, Applied Mathematics and Computation, Vol. 3, pp. 307–315, 1977.

    Article  Google Scholar 

  25. Tricomi, F. G., Integral Equations, John Wiley and Sons (Interscience Publishers), New York, New York, 1957.

    Google Scholar 

  26. Golberg, M. A., On a Method of Bownds for Solving Volterra Integral Equations,Chapter 10, this volume.

    Google Scholar 

  27. Pogorozelski, W., Integral Equations and Their Applications, Pergamon Press and Polish Scientific Publishers, Warsaw, Poland, 1966.

    Google Scholar 

  28. Bownds, J. M., and Defranco, R. J., On Converting Multiple Fredholm Equations to Systems of Partial Differential Equations (to appear).

    Google Scholar 

  29. Defranco, R. J., Stability Results for Multiple Volterra Integral Equations, University of Arizona, PhD Thesis, 1973.

    Google Scholar 

  30. Bownds, J. M., and Defranco, R. J., Unpublished Results, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bownds, J.M. (1979). On an Initial-Value Method for Quickly Solving Volterra Integral Equations: A Review. In: Golberg, M.A. (eds) Solution Methods for Integral Equations. Mathematical Concepts and Methods in Science and Engineering, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1466-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1466-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1468-5

  • Online ISBN: 978-1-4757-1466-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics