Applications of Integral Equations in Particle-Size Statistics

  • A. Goldman
  • W. Visscher
Part of the Mathematical Concepts and Methods in Science and Engineering book series (MCSENG, volume 18)


We discuss the application of integral equations techniques to two broad areas of particle statistics, namely, stereology and packing. Problems in stereology lead to the inversion of Abel-type integral equations; and we present a brief survey of existing methods, analytical and numerical, for doing this. Packing problems lead to Volterra equations which, in simple cases, can be solved exactly and, in other cases, need to be solved numerically. Methods for doing this are presented along with some numerical results.


Integral Equation Random Packing Random Plane Apparent Radius Parking Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elias, H., Steriologia, Vol. 1, Editorial, p. 1, 1962.Google Scholar
  2. 2.
    Wicksell, S. D., The Corpuscle Problem, Biometrika, Vol. 17, pp. 84–89, 1925.Google Scholar
  3. 3.
    Kendall, M. G., and Moran, P. A. P., Geometrical Probability, Hafner Publishing Company, New York, New York, 1963.Google Scholar
  4. 4.
    Scheil, E., Die Berechnung der Anzahl and Grossenverteilung Kugelformiger Korpern mit Hilfe der Durch Abenen Schnitt Erhaltenen Schnitt Kreise, Zeitschrift für Anorganische und Allgemeine Chemie, Vol. 201, pp. 259–264, 1931.CrossRefGoogle Scholar
  5. 5.
    Reid, W. P., Distribution of Sizes of Spheres in a Solid from a Study of Slices of the Solid, Journal of Mathematics and Physics, Vol. 34, pp. 95–102, 1955.Google Scholar
  6. 6.
    Santalo, L. A., Sobre la Distribucion de los Tamaiios de Corpûsculos Contenides en un Cuerpo a Partir de la Distribucion en Sus Secciones o Proyecciones, Trabajos de Estadistica, Vol. 6, pp. 181–196, 1955.CrossRefGoogle Scholar
  7. 7.
    Courant, R., and Hilbert, D., Methods of Mathematical Physics, Vol. 1, John Wiley and Sons (Interscience Publishers), New York, New York, 1953.Google Scholar
  8. 8.
    Anderssen, R. S., and Jakeman, A. J., Abel-Type Integral Equations in Stereology, Journal of Microscopy, Vol. 105, pp. 121–153, 1975.CrossRefGoogle Scholar
  9. 9.
    Minerbo, G. N., and Levy, M. E., Inversion of Abel’s Integral Equation by Means of Orthogonal Polynomials, SIAM Journal on Numerical Analysis, Vol. 6, pp. 598–616, 1969.CrossRefGoogle Scholar
  10. 10.
    Einarrson, B., Numerical Solution of Abel’s Integral Equation with Spline Functions,Forsvarets Forskning Sanstalt, Report No. 1-C2455–11(25), 1971.Google Scholar
  11. 11.
    Piessens, R., and Verbaeten, P., Numerical Solution of the Abel Integral Equation, Bit, Vol. 13, pp. 451–457, 1973.CrossRefGoogle Scholar
  12. 12.
    Nicholson, W. L., Estimation of Linear Properties of Particle Size Distributions, Biometrika, Vol. 57, pp. 273–297, 1970.CrossRefGoogle Scholar
  13. 13.
    Jakeman, A. J., The Numerical Inversion of ATel-Type Integral Equations, Australian National University, PhD Thesis, 1975.Google Scholar
  14. 14.
    Anderssen, R. S., and Jakeman, A. J., Product Integration for Functionals of Particle Size Distributions, Utilitas Mathematica, Vol. 8, pp. 111–126, 1975.Google Scholar
  15. 15.
    Saltikov, S. A., The Determination of the Size Distribution of Particles in an Opaque Material from a Measurement of the Size Distribution of Their Sections, Stereology, Edited by H. Elias, Springer-Verlag, New York, New York, 1967.Google Scholar
  16. 16.
    Anderssen, R. S., and Jakeman, A. J., On Computational Stereology, Proceedings of the 6th Australian Computer Conference, Sydney, Australia, 1974.Google Scholar
  17. 17.
    Lewis, H. D., Walters, K. L., and Johnson, K. A., Particle Size Distributions by Area Analysis: Modifications and Extensions of the Saltikov Method, Metallography, Vol. 6, pp. 93–101, 1973.CrossRefGoogle Scholar
  18. 18.
    Dehoff, R. T., The Estimation of Particle Distribution from Simple Counting Measurements Made on Random Plane Sections, Transactions of the Metallurgical Society, AIME, Vol. 233, pp. 25–29, 1965.Google Scholar
  19. 19.
    Keiding, N., Jensen, S. T., and Ranek, L., Maximum Likelihood Estimation of the Size Distribution of Linear Cell Nuclei From the Observed Distribution in a Plane Section, Biometrics, Vol. 28, pp. 813–830, 1972.CrossRefGoogle Scholar
  20. 20.
    Wiggins, A., Unpublished Report, 1976.Google Scholar
  21. 21.
    Watson, G. S., Estimating Functions of Particle Size Distributions, Biometrika, Vol. 58, pp. 483–490, 1971.CrossRefGoogle Scholar
  22. 22.
    Goldsmith, P. L., Calculation of True Particle Size Distributions from Sizes Observed in a Thin Slice, British Journal of Applied Physics, Vol. 18, pp. 813–830, 1967.CrossRefGoogle Scholar
  23. 23.
    Hilliard, J. E., The Counting and Sizing of Particles in Transmission Microscopy, Transactions of the Metallurgical Society of AIME, Vol. 224, pp. 906–917, 1962.Google Scholar
  24. 24.
    Moran, P. A. P., The Probabilistic Basis of Stereology, Advances in Applied Probability, Supplement, pp. 69–91, 1972.Google Scholar
  25. 25.
    Underwood, E. E., The Mathematical Foundations of Quantitative Stereology; Stereology and Quantitative Metallography, Special Technical Publication No. 504, ASTM, Philadelphia, Pennsylvania, 1972.Google Scholar
  26. 26.
    Renyi, A., On a One-Dimensional Problem Concerning Space Filling, Publications of the Mathematical Institute of the Hungarian Academy of Sciences, Vol. 3, pp. 109–127, 1958.Google Scholar
  27. 27.
    Hua, L. K., Estimation of an Integral, Chinese Mathematical Society, Vol. 11. pp. 393–402, 1951.Google Scholar
  28. 28.
    Blaisdell, E., and Solomon, H., On Random Sequential Packing in the Plane and a Conjecture by Palasti, Journal of Applied Probability, Vol. 7, pp. 667–698, 1970.CrossRefGoogle Scholar
  29. 29.
    Dvoratzky, A., and Robbins, H., On the Parking Problem, Publications of the Mathematical Institute of The Hungarian Academy of Sciences, Vol. 9, pp. 209–224, 1964.Google Scholar
  30. 30.
    Mannion, D., Random Space Filling in One Dimension, Publications of the Mathematical Institute of the Hungarian Academy of Sciences, Vol. 9, pp. 143–154, 1964.Google Scholar
  31. 31.
    Ney, P. E., A Random Integral Filling Problem, Annals of Mathematical Statistics, Vol. 33, pp. 702–718, 1962.CrossRefGoogle Scholar
  32. 32.
    Goldman, A., Lewis, H. D., and Visscher, W. M., Random Packing Model, Technometrics, Vol. 16, pp. 301–309, 1974.CrossRefGoogle Scholar
  33. 33.
    Goldman, A., Lewis, H. D., and Visscher, W. M., Random Packing of Particles: Simulation with a One-Dimensional Parking Model, Los Alamos Scientific Laboratory, Report No. LA-DC-72–1537, 1974.Google Scholar
  34. 34.
    Solomon, H., Random Packing Density, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, California, 1967.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • A. Goldman
    • 1
  • W. Visscher
    • 2
  1. 1.Department of MathematicsUniversity of Nevada at Las VegasLas VegasUSA
  2. 2.T-11, Theoretical DivisionLos Alamos Scientific LaboratoryLos AlamosUSA

Personalised recommendations