The Approximate Solution of Singular Integral Equations

  • D. Elliott
Part of the Mathematical Concepts and Methods in Science and Engineering book series (MCSENG, volume 18)


We present a survey of numerical methods for solving Cauchy singular integral equations on both open and closed arcs in the plane. For completeness, necessary theory is reviewed, particularly the method of regularization. For closed arcs we discuss collocation methods based on piecewise polynomial or rational representations of the solution. Emphasis here, as for the open arc case, is on regularizable equations. For open arcs a detailed discussion is given of a degenerate kernel method developed recently by Dow and Elliott. In addition to this, a generalization of a Galerkin method due to Karpenko is presented. Attention is drawn to the relation of Cauchy singular equations and solving rectangular systems of linear equations. The possibility of exploiting this for the direct solution of such equations is discussed, and some direction for future research is given.


Approximate Solution Singular Integral Equation Linear Algebraic Equation Fredholm Integral Equation Closed Contour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zabreyko, P. P., Koshelev, A. I., Krasnosel’skii, M. A., Mikhlin, S. G., Rakovshchik, L. S., and Stetsenko, Y., Integral Equations—A Reference Text, Noordhoff International Publishing Company, Leyden, Holland, 1975.CrossRefGoogle Scholar
  2. 2.
    Atkinson, K. E., A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind, Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1976.Google Scholar
  3. 3.
    Hilbert, D., Ober eine Anwendung der Integralgleichungen auf ein Problem der Funktiontheorie, Verhandl, des III International Mathematische Kongress, Heidelberg, Germany, 1904.Google Scholar
  4. 4.
    Hilbert, D., Grundzüge einer Allgemeinen Theorie der Linearen Integralgleichungen, B. G. Teubner, Leipzig/Berlin, Germany, 1912.Google Scholar
  5. 5.
    Poincaré, H., Lecons de Mécanique Céleste, Vol. 3, Gauthier-Villars, Paris, France, 1910.Google Scholar
  6. 6.
    Fredholm, I., Sur une Classe d’Équations Functionelles, Acta Mathematica, Vol. 27, pp. 365–390, 1903.CrossRefGoogle Scholar
  7. 7.
    Fredholm, I., Les Equations Intégrales Lineaires, Comptes Rendues du Congresse de Stockholm, Sweden, 1909, pp. 92–100; B. G. Teubner, Leipzig, 1910.Google Scholar
  8. 8.
    Noether, F., Ober eine Klasse SingulärerIntegralgleichungen, Mathematische Annalen, Vol. 82, pp. 42–63, 1921.CrossRefGoogle Scholar
  9. 9.
    Carleman, T., Sur la Resolution de Certaines Equations Intégrales, Arkiv fur Mathematik, Vol. 16, No. 26, 1922.Google Scholar
  10. 10.
    Muskhelishvili, N. I, Singular Integral Equations, Noordhoff, Groningen, Holland, 1953.Google Scholar
  11. 11.
    Privalov, I., Boundary Properties of Analytic Functions, Second Edition, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow/Leningrad, U.S.S.R., 1950.Google Scholar
  12. 12.
    Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity, Third Edition, Noordhoff, Groningen, Holland, 1953.Google Scholar
  13. 13.
    Gakhov, F. D., Boundary Value Problems, Pergamon Press, Oxford, England, 1966.Google Scholar
  14. 14.
    Vekua, N. P., Systems of Singular Integral Equations, Noordhoff International Publishing Company, Groningen, Holland, 1967.Google Scholar
  15. 15.
    Mikhlin, S. G., Multidimensional Singular Integrals and Integral Equations, Pergamon Press, Oxford, England, 1965.Google Scholar
  16. 16.
    Ivanov, V. V., The Theory of Approximate Methods and Their Application to the Numerical Solution of Singular Integral Equations, Translated by A. Ideh, translation edited by R. S. Anderssen and D. Elliott, Noordhoff International Publishing Company, Leyden, Holland, 1976 (Russian edition published in 1968 ).Google Scholar
  17. 17.
    Hyers, D. H., A Review of “The Theory of Approximate Methods and Their Applications to the Numerical Solution of Singular Integral Equations” by V. V. Ivanov, Bulletin of the American Mathematical Society, Vol. 83, pp. 964–967, 1977.Google Scholar
  18. 18.
    Vekua, I. N., On Linear Singular integral Equations Containing Integrals in the Sense of Cauchy Principal Value, Doklady Akademia Nauk, U.S.S.R., Vol. 26, pp. 335–338, 1940.Google Scholar
  19. 19.
    Atkinson, K. E., The Numerical Evaluation of the Cauchy Transform on Simple Closed Curves, Society for Industrial and Applied Mathematics Journal on Numerical Analysis, Vol. 9, pp. 284–299, 1972.CrossRefGoogle Scholar
  20. 20.
    Mcinnes, A. W., On the Uniform Approximation of a Class of Singular Integral Equations in a Hölder Space, University of Illinois, PhD Thesis, 1972.Google Scholar
  21. 21.
    Gabdulhaev, B. G., A Direct Method for Solving Integral Equations, American Mathematical Society Translation, Series 2, Vol. 91, pp. 213–224, 1970.Google Scholar
  22. 22.
    Gabdulhaev, B. G., Approximate Solution of Singular Integral Equations by the Method of Mechanical Quadratures, Soviet Mathematics Doklady, Vol. 9, pp. 239–332, 1968.Google Scholar
  23. 23.
    Tricotvii, F. G., Integral Equations, Interscience Publishers, New York, New York, 1957.Google Scholar
  24. 24.
    Dow, M. L., and Elliott, D., The Numerical Solution of Singular Integral Equations over [-1, 1], Society for Industrial and Applied Mathematics Journal on Numerical Analysis, Vol. 16, pp. 115–134, 1979.CrossRefGoogle Scholar
  25. 25.
    Maccamy, R. C., On Singular Integral Equations with Logarithmic or Cauchy Kernels, Journal of Mathematics and Mechanics, Vol. 7, pp. 355–376, 1958.Google Scholar
  26. 26.
    Szegö, G., Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Vol. 23, 1967.Google Scholar
  27. 27.
    Erdogan, F., and Gupta. G. D., On the Numerical Solution of Singular Integral Equations, Quarterly of Applied Mathematics, Vol. 30, pp. 525–534, 1972.Google Scholar
  28. 28.
    Linz, P., An Analysis of a Method for Solving Singular Integral Equations, BIT, Vol. 17, pp. 329–337, 1977.Google Scholar
  29. 29.
    Karpenko, L. N., Approximate Solution of a Singular Integral Equation by Means of Jacobi Polynomials, Journal of Applied Mathematics and Mechanics, Vol. 30, pp. 668–675, 1966.CrossRefGoogle Scholar
  30. 30.
    Davis, P. J., and Rabinowitz, P., Methods of Numerical Integration, Academic Press, New York, New York, 1975.Google Scholar
  31. 31.
    Hunter, D. B., Some Gauss-Type Formulas for the Evaluation of Cauchy Principal Value Integrals, Numerische Mathematik, Vol. 19, pp. 419–424, 1972.CrossRefGoogle Scholar
  32. 32.
    Elliott, D., and Paget, D. F., Gauss-Type Quadrature Rules for Cauchy Principal Value Integrals, Mathematics of Computation, Vol. 33, pp. 301–309, 1979.CrossRefGoogle Scholar
  33. 33.
    Erdogan, F., Gupta, G. D., and Cook, T. S., Numerical Solution of Singular Integral Equations, Mechanics of Fracture, Vol. 1, pp. 368–425, 1973.Google Scholar
  34. 34.
    Fromme, J., and Golberg, M., Numerical Solution of a Class of Integral Equations Arising in Two-Dimensional Aerodynamics,this volume, Chapter 4.Google Scholar
  35. 35.
    Krenk, S., On the Integration of Singular Integral Equations, Danish Center for Applied Mathematics and Mechanics, Report No. 65, 1974.Google Scholar
  36. 36.
    Sesko, M. A., On the Numerical Solution of a Singular Integral Equation on an Open Contour, Akademia Nauk BSSR, Vestsi, Ser. Fiz.-Mat. Vol. 1, pp. 29–36, 1975.Google Scholar
  37. 37.
    Tfeocaris, P. S., and Ioakimidis, N. I., Numerical Solution of Cauchy-Type Singular Integral Equations, Transactions of the Athens Academy, Vol. 40, pp. 1–39, 1977.Google Scholar
  38. 38.
    Ikebe, Y., Li, T. Y., and Stenger, F., The Numerical Solution of the Hilbert Problem, The Theory of Approximation with Applications, Edited by A. G. Law and B. N. Sahney, Academic Press, New York, New York, 1976.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • D. Elliott
    • 1
  1. 1.The University of TasmaniaHobartAustralia

Personalised recommendations