Advertisement

Fourier Transforms and Distributions. A Rapid Course

  • Sigurdur Helgason
Part of the Progress in Mathematics book series (PM, volume 5)

Abstract

Let ℝ n = {x = (x 1, ... , x n ) : x i ∈ ℝ} and let δ i , denote δ/δx i .

Keywords

Fourier Transform Holomorphic Function Analytic Continuation Constant Coefficient Fundamental System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Gelfand, I.M., Graev, M.I., and Vilenkin, N. Generalized Functions, Vol. 5: Integral Geometry and Representation Theory, Academic Press, New York, 1966.Google Scholar
  2. Helgason, S. Duality and Radon transforms for symmetric spaces, Amer. J. Math. 85 (1963), 667–692.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Solmon, D.C. “The range of the Radon transform on symmetric spaces,” in: Proc. Conf. on Representation Theory of Reductive Lie Groups, Park City, Utah, 1982, P. Trombi, ed., Birkhäuser, Basel and Boston, 1983, 145–151.Google Scholar
  4. Ehrenpreis, L. Solutions of some problems of division, part III, Amer. J. Math. 78 (1956), 685–715.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Asgeirsson, L. Über eine Mittelwertseigenschaft von Lösungen homogener linearer partieller Differentialgleichungen 2 Ordnung mit konstanten Koefficienten, Math. Ann. 113 (1937), 321–346.MathSciNetCrossRefGoogle Scholar
  6. Borovikov, W.A. Fundamental solutions of linear partial differential equations with constant coefficients, Trudy Moscov. Mat. Obshch. 8 (1959), 199–257.MathSciNetzbMATHGoogle Scholar

Copyright information

© Sigurdur Helgason 1999

Authors and Affiliations

  • Sigurdur Helgason
    • 1
  1. 1.Department of MathematicsMITCambridgeUSA

Personalised recommendations