The Radon Transform on ℝn

  • Sigurdur Helgason
Part of the Progress in Mathematics book series (PM, volume 5)


It was proved by J. Radon in 1917 that a differentiable function on ℝ3 can be determined explicitly by means of its integrals over the planes in ℝ3. Let J(ω, p) denote the integral of f over the hyperplane 〈x, ω〉 = p, ω denoting a unit vector and 〈,〉 the inner product.


Plane Wave Compact Support Inversion Formula Chapter Versus Radon Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Radon, J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisserMannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math. Nat. Kl. 69 (1917), 262–277.Google Scholar
  2. John, F. Bestimmung einer Funktion aus ihren Integralen über gevisse Mannigfaltigkeiten, Math. Ann. 109 (1934), 488–520.MathSciNetCrossRefGoogle Scholar
  3. John, F. Plane Waves and Spherical Means, Wiley—Interscience, New York, 1955.zbMATHGoogle Scholar
  4. Bockwinkel, H.B.A. On the propagation of light in a biaxial crystal about a midpoint of oscillation, Verh. Konink. Acad. V. Wet. Wissen. Natur. 14 (1906), 636.zbMATHGoogle Scholar
  5. Gelfand, I.IŸI. and Shilov, G.F. Verallgemeinerte Funktionen, Vol. I, German Transi. VEB, Berlin, 1960.Google Scholar
  6. Grinberg, E. Radon transforms on higher rank Grassmannians, J. Differential Geom. 24 (1986), 53–68.MathSciNetzbMATHGoogle Scholar
  7. Helgason, S. A duality in integral geometry: some generalizations of the Radon transform, Bull. Amer. Math. Soc. 70 (1964), 435–446.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Nagano, T. Homogeneous sphere bundles and the isotropic Riemannian manifolds, Nagoya Math. J. 15 (1959), 29–55.MathSciNetzbMATHGoogle Scholar
  9. Schwartz, L. Théories des Distributions, 2nd Ed., Hermann, Paris, 1966.Google Scholar
  10. Cormack, A.M. Representation of a function by its line integrals, with some radiological applications I, II, J. Appt. Phys. 35 (1964), 2908–2912.CrossRefzbMATHGoogle Scholar
  11. Helgason, S. The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, Acta Math. 113 (1965), 153–180.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Lax, P. and Phillips, R.S., Scattering Theory, Academic Press, New York, 1967.zbMATHGoogle Scholar
  13. Quinto, F.T. The invertibility of rotation invariant Radon transforms, J. Math. Anal. Appl. 91 (1983), 510–521;MathSciNetCrossRefzbMATHGoogle Scholar
  14. John, F. Anhängigheit zwischen den Flächenintegralen einer stetigen Funktion, Math. Ann. 111 (1935), 541–559.MathSciNetCrossRefGoogle Scholar
  15. Petrov, E.F. A Paley-Wiener theorem for a Radon complex, Izv. Vyssh. Uchebn. Zaved. Math. 3 (1977), 66–77.Google Scholar
  16. Gonzalez, F. Bi-invariant differential operators on the Euclidean motion group and applications to generalized Radon transforms, Ark. Mat. 26 (1988), 191–204.MathSciNetCrossRefzbMATHGoogle Scholar
  17. Helgason, S. Support of Radon transforms, Adv. in Math. 38 (1980), 91–100.MathSciNetCrossRefzbMATHGoogle Scholar
  18. John, F. Range characterization of Radon transforms on quaternion projective spaces Math. Kyoto Univ. 33 (1993), 315–228.MathSciNetGoogle Scholar
  19. John, F. Integral geometry on Grassmann manifolds and calculus of invariant differential operators, preprint, 1998.Google Scholar
  20. Kuchment, P.A. and Lvin, S.Y. Paley-Wiener theorem for exponential Radon transform, Acta Appl. Math. 18 (1990), 251–260.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Berenstein, C.A. and Tarabusi, E.C. Radon-and Riesz transform in real hyperbolic spaces, Contemp. Math. 140 (1992), 1–18.CrossRefGoogle Scholar
  22. Berenstein, C.A. and Tarabusi, E.C. Range of the k-dimensional Radon transform in real hyperbolic spaces, Forum Math. 5 (1993), 603–616.MathSciNetzbMATHGoogle Scholar
  23. Boman, J. and Quinto, E.T. Support theorems for real-analytic Radon transforms, Duke Math. J. 55 (1987), 943–948.MathSciNetCrossRefzbMATHGoogle Scholar
  24. Gelfand, I.M., Gindikin, S.G., and Shapiro, S.J. A local problem of integral geometry in a space of curves, Funct. Anal. Appl. 13 (1979), 11–31.MathSciNetGoogle Scholar
  25. John, F. Range characterization of Radon transforms on quaternion projective spaces, Math. Ann. 301 (1995), 613–625.MathSciNetCrossRefGoogle Scholar
  26. Fuglede, B. An integral formula, Math. Scand. 6 (1958), 207–212.MathSciNetzbMATHGoogle Scholar
  27. John, F. The ultrahyperbolic differential equation with 4 independent variables, Duke Math. J. 4 (1938), 300–322.MathSciNetCrossRefGoogle Scholar
  28. Lax, P. and Phillips, R.S. A local Paley-Wiener theorem for the Radon transform of L2 functions in a non-Euclidean setting, Comm. Pure Appl. Math. 35 (1982), 531–554.MathSciNetzbMATHGoogle Scholar
  29. Michel, L. Problèmes d’analyse geométrique liés à la conjecture de Blaschke, Bull. Soc. Math. France 101 (1973), 17–69.MathSciNetzbMATHGoogle Scholar
  30. Weiss, B. Measures which vanish on half spaces, Proc. Amer. Math. Soc. 18 (1967), 123–126.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Sigurdur Helgason 1999

Authors and Affiliations

  • Sigurdur Helgason
    • 1
  1. 1.Department of MathematicsMITCambridgeUSA

Personalised recommendations