Pteridines in the Pineal and Effects of These Substances on the Indole Metabolism of This Organ

  • I. Ebels
  • M. G. M. Balemans
  • J. van Benthem
  • H. P. J. M. Noteborn
  • A. de Morée
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 65)


Pteridines are very light sensitive substances. The first compounds of this class were isolated as a yellow pigment from the wings of the brimstone butterfly by Wieland and Schöpf (1925) and as the white pigment from the wings of the cabbage butterfly by Schöpf and Wieland (1926). These pigments were named xanthopterin and leucopterin indicating the colour and source of the compounds. The real chemical structure of these substances was not solved until 1940 by Purrmann. The structure of a third insect pigment, isoxanthopterin was also elucidated by Purrmann in 1941. The well-known structure folic acid, and its derivatives which play a key role in metabolism, contains also a pteridine ring. For a survey of the most important literature in the pteridine field till 1969, see Blakly’s “Biochemistry of folic acid and related pteridines”.


Pineal Gland Paper Chromatography Pineal Organ High Molecular Weight Material Pineal Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balemans, M.G.M., 1979, Indole metabolism in the pineal gland of the rat. Some regulatory aspects, Progr. Brain Res., 52: 221.CrossRefGoogle Scholar
  2. Balemans, M.G.M., 1981, Indole metabolism in the pineal gland, the harderian gland and the retina in mammals in: “The Pineal Organ,” A. Oksche and P. Pévet, eds., Elsevier/North-Holland, Amsterdam-New York-Oxford.Google Scholar
  3. Balemans, M.G.M., Noordergraaf, E.M., Bary, F.A.M., and Van Berlo, M.F., 1978, Estimation of the methylating capacity of the pineal gland. With special reference to indole metabolism, Experientia 34: 887.Google Scholar
  4. Balemans, M.G.M., Van Benthem, J., Legerstee, W.C., de Morée, A., Noteborn, H.P.J.M., and Ebels, I., 1980, The influence of some pterins on the circadian rhythmicity of hydroxyindole-O-methyl transferase in the pineal gland of 42-day old male Wistar rats, Reprod. Nutr. Develop. 20(4A):1051.Google Scholar
  5. Balemans, M.G.M., Ebels, I., Hendriks, H.G., and Van Berlo, M.F., 1982, Changes in the circadian rhythmicity of hydroxyindole0-methyl transferase (HIOMT) activity in the synthesis of 5methoxyindoles in the pineal gland of 28-day old male Wistar rats, exposed to white, red and green light, J. Neural Transm. in press.Google Scholar
  6. Benoit, J., 1964, The role of the eye and of the hypothalamus in the photostimulation of gonads in the duck, Ann. N.Y. Acad. Sci., 117: 204.PubMedCrossRefGoogle Scholar
  7. Benoit, J., 1972, Etude quantitative de l’action de la lumière visible sur les fonctions génitales et endocriniennes et autres fonctions vegetatives des vertébrés. Mécanisme physiologique de cette action, Lux, 69: 1.Google Scholar
  8. Bensinger, R., Vaughan, M.K., and Klein, D.C., 1973, Isolation of a non-melatonin lipophilic antigonadotrophic factor from the bovine pineal gland, Fed. Proc. Am. Socs. Exp. Biol. 32: 225.Google Scholar
  9. Blakly, R.L., 1969, The biochemistry of folic acid and related pteridines, North Holland Publishing Company, Amsterdam-London.Google Scholar
  10. Blask, D.E., Vaughan, M.K., Reiter, R.J., Johnson, L.Y., and Vaughan, G.M., 1976, Prolactin-releasing and release-inhibiting factor activities in the bovine, rat and human pineal gland. In vitro and in vivo studies, Endocrinology 99: 152.Google Scholar
  11. Cremer-Bartels, G., 1979, The effect of pteridines on multiple forms of hydroxyindole-O-methyl transferase (HIOMT) in the retina and the pineal gland. Progr. Brain Res., 52:231.Google Scholar
  12. Cremer-Bartels, G., and Hollwich, F., 1978, Effect of triaminophenylpteridine on hydroxyindole-O-methyl transferase of rat pineal gland and bovine retina, J. Neural Transm. Suppl. 13: 360.Google Scholar
  13. Cremer-Bartels, G., and Ebels, I., 1980, Pteridines as nonretinal regulators of light-dependent melatonin biosynthesis, Proc. Natl. Acad. Sci. U.S.A. 77:2415.Google Scholar
  14. Ebels, I., 1979, A chemical studt of some biologically active pineal fractions, practions, progr. Brain. Res., 52: 309.Google Scholar
  15. Ebels, I., 1981, Pteridines in the pineal Organ, in: “The Pineal Organ,” A. Oksche and P. Pévet, eds Amsterdam-New York-Oxford.Google Scholar
  16. Ebels, I., Benson, B., Bria, C.F., McDonnell, D., Chang, S.Y., and Hruby, V.J., 1978, Location by paper chromatography of compensatory ovarian hypertrophy (COH) inhibiting activity in acetic acid extracts from bovine pineals, J. Neural. Transm. 42: 275.PubMedCrossRefGoogle Scholar
  17. Ebels, I., Benson, B., Bria, C.F., Richardson, D., Larsen, B.R., and Hruby, V.J., 1979, Location by paper chromatography of compensatory ovarian hypertrophy (COH) inhibiting activity in isobuta nol extracts of bovine pineals, J. Neural Transm.. 45: 43.PubMedCrossRefGoogle Scholar
  18. Ebels, I., and Cremer-Bartels, G., 1982, Inhibition of avian mammalian hydroxyindole-O-methyl transferase (HIOMT) with low molecular weight fractions of mammalian pineal glands, Life. Sci., 40: 1369.CrossRefGoogle Scholar
  19. Fukushima, T., and Nixon, J.C., 1979, Reverse-phase high performance liquid chromatographic separation of unconjugated pterins and pteridines, in: “Chemistry and Biology of Pteridines,”R.L. Kisliuk and G.M. Brown, eds., North-Holland-Amsterdam.Google Scholar
  20. Fukushima, T., and Nixon, J.C., 1980, Analysis of reduced forms of biopterin in biological tissues and fluids, Anal. Biochem. 102: 176.PubMedCrossRefGoogle Scholar
  21. Kapatos, G., and Kaufman, S., 1981, Peripherally administered reduced pterins do enter the brain, Science. 212: 955.PubMedCrossRefGoogle Scholar
  22. Kapatos, G., Kaufman, S., Weller, J.L., and Klein, D.C., 1981, Biosynthesis of biopterin: Adrenergic cyclic adenosine monophosphate-dependent inhibition in the pineal gland, Science, 213: 1129.PubMedCrossRefGoogle Scholar
  23. Katoh, S., Suéko, T., and Yamada, S., 1982, Direct inhibition of brain sepiapterin reductase by a catecholamine and an indoleamine, Biochem. Biophys. Res. Comm., 105: 75.Google Scholar
  24. Lapin, V., 1974, Influence of simultaneous thymectomy and pinealectomy on the growth and formation of metastases of the Yoshida sarcoma in rats, Exp. Path. 9: 108.Google Scholar
  25. Lapin, V., 1976, Pineal gland and malignancy, Osterr. Z. Oncol., 3:51.Google Scholar
  26. Lapin, V., 1978, Effects of reserpine on the incidence of 9,10-dimethyl-1,2-benzanthracene-induced tumours in pinealectomized and thymectomized rats, Oncol. 35: 132.CrossRefGoogle Scholar
  27. Lapin, V., 1979, Pineal influence on tumors, Progr. Brain Res., 52: 523.Google Scholar
  28. Lapin, V., and Ebels, I., 1981, The role of the pineal gland in neuro-endocrine control mechanisms of neoplastic growth, J. Neural Transm. 50: 275.PubMedCrossRefGoogle Scholar
  29. Lapin, V., and Frowein, A., 1981, Effects of growing tumours on pineal melatonin levels in male rats, J. Neural Transm. 52: 123.PubMedCrossRefGoogle Scholar
  30. Levine, R.A., Kuhn, D.M., and Lovenberg, W., 1979, The regional distribution of hydroxylase cofactor in rat brain, J. Neurochem. 32: 1575.PubMedCrossRefGoogle Scholar
  31. Levine, R.A., Miller, L.P., and Lovenberg, W., 1981, Tetrahydrobiopterin in striatum: Localization in dopamine nerve terminals and role in catecholamine synthesis, Science 214: 919.Google Scholar
  32. Lloyd, T., and Weiner, N., 1971, Isolation and characterization of a tyrosine hydroxylase cofactor from adrenal medulla, Mol. Pharmac. 7: 569.Google Scholar
  33. Miline, R., 1949, L’influence de la lumière sur la maturation sexuelle, Medicinski Pregled. (Med Progr.) 3: 86.Google Scholar
  34. Moszkowska, A., Hus-Citharel, A., L’Héritier, A., Zurburg, W., and Ebels, I., 1976, Separation of pineal extracts by gelfiltration. V. Location by paper chromatography, J. Neural. Transm., 38: 239.PubMedCrossRefGoogle Scholar
  35. Nagatsu, T., Yamaguchi, T., Kato, T., Sugimoto, T., Matsuura, S., Akino, M., Tsushima, S., Nakazawa, N., and Ogawa, H., 1981, Radioimmunoassay for biopterin in body fluids and tissues, Anal. Biochem., 110: 182.PubMedCrossRefGoogle Scholar
  36. Nagatsu, T., Wakui, Y., Kato, T., Fujita, K., Kondo, T., Yokochi, F., and Narabayashi, H., 1982, Dopamine beta-hydroxylase activity in cerebrospinal fluid of Parkinsonian patients, Biomed Res., 3: 95Google Scholar
  37. Purrmann, R., 1940a, Ober die Flügelpgmente der Schmetterlinge VII. Synthese des Leukopterins und Natur des Guanopterins, Ann. Chem., 544: 182.Google Scholar
  38. Purrmann, R., 1940b, Die Synthese des Xanthopterins. Uber die Flügelpigmente der Schmetterlinge X, Ann. Chem., 546:98.Google Scholar
  39. Purrmann, R., 1941, Konstitution und Synthese des sogenannten Anhydroleukopterins. Ober die Flügelpigmente der Schmetterlinge XII, Ann. Chem. 548: 284.CrossRefGoogle Scholar
  40. Schaub, J., Däumling, S., Curtius, H.-Ch., Niederwieser, A., Bartholomé, K., Viscontini, M., Schircks, B., and Bieri, J.H., 1978, Tetrahydrobiopterin therapy of atypical phenylketonuria due to defective dihydrobiopterin biosynthesis, Arch. Disease Childhood 53:674.Google Scholar
  41. Schöpf, C., and Wieland, H., 1926, Uber das leukopterin das weisse Flügelpigmentder Kohlweiszlinge (Pieris brassicae und P. Napt.) Ber. Deut. Chem. Ges., 59:2067.Google Scholar
  42. Van der Have-Kirchberg, M.M.L., de Morée, A., Van Laar, J.F., Gerwig, G.J., Versluis, C., Ebels, I., Hus-Citharel, A., L’Héritier, A., Roseau, S., Zurburg, W., and Moszkowska, A., 1977, Separation of pineal extracts by gelfiltration. VI. Isolation and identi-fication from sheep pineals of biopterin: comparison of the isolated compound with some synthetic pteridines and the biolo-gical activity in in vitro and in vivo bioassays. J. Neural. Transm., 40: 205.Google Scholar
  43. Wieland, H., and Schöpf, C., 1925, Uber den gelben Flügelfarbstoff des Citronenfalters (Gonepteryx rhamni), Ber. Deut. Chem. Ges. 58: 2178.CrossRefGoogle Scholar
  44. Ziegler, I., and Kokolis, N., 1979, In vivo metabolism of deutero-L-phenylalanine and deutero-L-tyrosine and levels of tetrahydrobiopterin in the blood of tumour bearing organisms, in: “Chemistry and Biology of Pteridines,” R.L. Kisliuk, and G.M. Brown, eds., Elsevier/North-Holland, New York-Oxford-Amsterdam.Google Scholar
  45. Ziegler, I., Maier, K., and Fink, M., 1982, Pteridine-binding al-acid glycoprotein from blood of patients with neoplastic diseases, Cancer Res., 42: 1567.PubMedGoogle Scholar
  46. Ziegler, I., Maier, K., and Wilmans, W., 1982, Blood levels of a pteridine-binding al-acid glycoprotein in cancer patients, Cancer Res., 42: 1574.PubMedGoogle Scholar
  47. Zinbo, M., and Sherman, W.R., 1970, Gas chromatography and mass spectrometry of trimethylsilyl sugar phosphates, J. Am. Chem. Soc., 92: 2105.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • I. Ebels
    • 1
  • M. G. M. Balemans
    • 2
  • J. van Benthem
    • 2
  • H. P. J. M. Noteborn
    • 1
  • A. de Morée
    • 1
  1. 1.Department of Organic ChemistryState University of UtrechtThe Netherlands
  2. 2.Zoological LaboratoryState University of UtrechtThe Netherlands

Personalised recommendations