The Different Classes of Proteic and Peptidic Substances Present in the Pineal Gland

  • Paul Pévet
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 65)


It is now well known that the pineal gland is principally involved in long-term adaptation of functions such as reproduction to environmental conditions. The mechanism by which the pineal acts on the gonadal axis is, however, not yet known. Recently it has been hypothesized that the 5-methoxyindoles (melatonin, 5-methoxytryptamine, 5-methoxytryptophan, 5-methoxytryptophol and 5-methoxyindole-3acetic acid) synthesized by the pineal gland as well as by the retina, Harderian gland and intestine would be implicated in a system by which the pineal and some other organs such as the brain would be able to perceive, to differentiate and to integrate environmental information such as photoperiod, temperature, food, etc. In response, the pineal, then, would synthesize and release proteic/peptidic hormone(s) which would act on the reproductive axis (Pévet et al., 1981b; Pévet and Haldar-Misra, 1982). Considering this hypothesis, the study of the pineal active proteic/peptidergic fractions — the discovery of which dates back as far as the 1920’s — appears to be of fundamental interest. According to the literature, the pineal appears to contain a large number of proteic or peptidic compounds, some of them being identified or partially characterized, others not (see table 1).


Vasoactive Intestinal Peptide Pineal Gland Thyrotropin Release Hormone PEPTIDIC Substance Luteinizing Hormone Release Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguado, L.I., Benelbaz, G.A., Gutierrez, L.S., and Rodriguez, E.M., 1977, Ultrastructure of the rat pineal gland grafted under the kidney capsule, Cell Tiss. Res., 176: 131.Google Scholar
  2. Altschule, M.D., 1957, Some effects of aqueous extracts of acetone-dried beef-pineal substance in chronic schizophrenia, N. Eng. J. Med. 257:919.Google Scholar
  3. Amundson, B.C., and Wheaton, J.E., 1979, Effects of chronic LHRH treatment on brain LHRH contant, pituitary and plasma LH and ovarian follicular activity in the anestrous ewe, Biol. Reprod. 20:633.Google Scholar
  4. Ariens Kappers, J., 1978, Localization of indoleamine and protein synthesis in the mammalian pineal gland, J. Neural Transm. suppl. 13:13Google Scholar
  5. Ariens Kappers, J., 1981, Evolution of pineal concepts, in: “The Pineal Organ - Photobiology, Biochronometry, Endocrinology”, A,Oksche and P.Pévet, eds., Elsevier/North-Holland Biomed. Press, Amsterdam.Google Scholar
  6. Balemans, M.G.M., Pévet, P., Van Benthem, J., HaldarMisra, C., Smith, I., and Hendriks, H., 1982, Seasonal rhythmicity in the capacity of HIOMT to synthesize different 5-methoxyindoles in the pineal, the retina and the Harderian gland of the golden hamster (Mesocricetus auratus ), submitted.Google Scholar
  7. Barry, J., 1979, Immunofluorescence study of the preoptico-terminal LRH tract in the female squirrel monkey during the estrous cycle, Cell Tiss. Res. 198:1.Google Scholar
  8. Benson, B., and Krasovich, M., 1977, Circadian rhythm in the number of granulated vesicles in the pinealocytes of mice. Effect of sympathectomy and melatonin treatment, Cell Tiss. Res. 184:499.Google Scholar
  9. Benson, B., Matthews, M.J., and Rodin, A.E., 1972, Studies on a non-melatonin pineal antigonadotrophin, Acta Endocrinologica 69: 257.Google Scholar
  10. Berelowitz, M., Kronheim, S., and Pimstone, B.L., 1978, Somatostatin in tissues, synaptosomes and biological fluids as measured by radioimmunoassays, in: “Hypothalamic Hormones - Chemistry, Physiology and Clinical Applications”, D.Gupta and W.Voelter, eds., Verlag Chemie, Weinheim, N.Y.Google Scholar
  11. Bianchi, P., and Osima, B., 1960, Bull. Soc. ital. Biol. sper. 36:1647, cited in Reiter and Vaughan, 1977.Google Scholar
  12. Blask, D.E., Vaughan, M.K., Reiter, R.J., Johnson, L.D., and Vaughan, G.M. 1976, Prolactin-releasing and release-inhibiting factor. Activities in the bovine, rat and human pineal gland. In vitro and in vivo studies, Endocrinology 99: 152.Google Scholar
  13. Bowie, E.P., 1980, Immunocytochemical evidence for the presence of an albumin-like substance in the rat pineal gland, Histochemistry 66: 83.Google Scholar
  14. Bowie, E.P., and Herbert, D.C., 1976, Immunocytochemical evidence for the presence of arginine vasotocin in the rat pineal gland, Nature (Lond.), 261: 66.Google Scholar
  15. Buijs, R.M., and Pévet, P., 1980, Vasopressin and oxytocin containing fibres in the pineal gland and subcommissural organ of the rat, Cell Tiss. Res. 205:11.Google Scholar
  16. Buijs, R.M., Pévet, P., and Swaab, D.F., 1982, “Chemical Transmission in the Brain”, Progr. Brain Res. 55, in press.Google Scholar
  17. Carson, R.S., Matthews, C.D., Findley, J.K., Symons, R. G., and Burger, H.G., 1977, Biological and immunological luteinizing hormone-releasing hormone (LHRH) activity of the ovine pineal, Neuroendocrinol. 24: 221.Google Scholar
  18. Changaris, D.G., Keil, L.C., and Severs, W.B., 1979, Angiotensin II immunohistochemistry of the rat brain, Neuroendocrinol. 25: 257.Google Scholar
  19. Chazov et al., 1972, Dokl. Acad. Nauk. SSSR 27:246, cited in Reiter and Vaughan, 1977.Google Scholar
  20. Cheesman, D.W., 1970, Structure elucidation of a gonadotropin-inhibiting substance from the bovine pineal gland, Biochem. biophys. Acta, 207: 247Google Scholar
  21. Cheesman, D.W., and Fariss, B.L., 1970, Isolation and characterization of a gonadotropin-inhibiting substance from the bovine pineal gland, Proc. Soc. exp. Biol. Med. 133:1254.Google Scholar
  22. Clementi, F., Muller, E., and Zanoboni, A., 1965, Pineal function and modification of its ultrastructural aspects, in: Proc. 2nd Intern. Congr. Endocrinology, London, 1964, Excerpta Medica, Int. Congress Series no. 83.Google Scholar
  23. Collin, J.P., 1979, Recent advances in pineal cytochemistry. Evidence of the production of indoleamines and proteinaceous substances by rudimentary photoreceptor cells and pinealocytes of amniota, in: “The Pineal Gland of Vertebrates including Man”, J.Ariéns Kappers and P. Pévet, eds., Prog. Brain Res. vol. 51, Elsevier, Amsterdam.Google Scholar
  24. Coculescu, M., Oprescu, M., and Zagrean, L., 1977, Angiotensin I-like immunoreactive substance in pineal gland of normal and Brattleboro rats with hereditary diabetes insipidus, Rev. Roum. Morph. Embryol. Physiol., 14: 47.Google Scholar
  25. Collin, J.P., and Oksche, A., 1981, Structural and functional relationships in the mammalian pineal gland, in: The Pineal Gland, Vol. I, Anatomy and Biochemistry, R.J.Reiter, ed., CRC Press, Boca Raton, USA.Google Scholar
  26. Dilman and Anisimov, 1975, Bull. Exp. Biol. Med. 80:1371, cited in Reiter and Vaughan, 1977.Google Scholar
  27. Dogterom, J., Snijdewint, F.G.M., Pévet, P., and Buijs, R.M., 1978, On the presence of neuropeptides in the mammalian pineal gland, EPSG-Newsletter Suppl. 1: 15.Google Scholar
  28. Dogterom, J., Snijdewint, F.G.M., Pévet, P., and Buijs, R.M., 1979, in: The Pineal Gland of Vertebrates including Man, J.Ariëns Kappers and P.Pévet, eds., Prog. Brain Res., 52, Elsevier, Amsterdam.Google Scholar
  29. Dogterom, J., Snijdewint, F.G.M., Pévet, P., and Swaab, D.F., 1980, Studies on the presence of vasopressin, oxytocin and vasotocin in the pineal gland, subcommissural organ and foetal pituitary gland: Failure to demonstrate vasotocin in mammals, J. Endocr. 84:115.Google Scholar
  30. Duraiswami, S., Franchimont, P., Boucher, D., and Thieblot, M., 1976, Immunoreactive luteinizing hormone releasing hormone (LH-RH) in the bovine pineal gland, Horm. Metab. Res. 8:232.Google Scholar
  31. Ebels, I., Benson, B., and Matthews, M.J., 1973, Localization of a sheep pineal antigonadotropin, Analyt. Biochem. 56:546.Google Scholar
  32. Ebels, I., Moskowska, A. et Scemama, A., 1965, Etude in vitro des extraits épiphysaires fractionnés. Résultats préliminaires, C.R. hebd. Séanc. Acad. Sci.260:5120.Google Scholar
  33. Ebels, I., Versteeg, D.H.G., and Vliegenthart, J.F.G., 1965, An attempt to isolate arginine vasotocin from sheep and bovine pineal body, Proc. Roy. Netherl. Acad. Sci. Ser. B, 68:1.Google Scholar
  34. Engel, P., 1935, Ueber die antigonadotrope Wirkung des Epiphysans. Wiener Klin. Wochenschr. 38.Google Scholar
  35. Fernstrom, J.D., Fischer, L.A., Cusack, B.M., and Gillis, M.A., 1980, Radioimmunologic detection and measurement of nonapeptides in the pineal gland, Endocrinology 106: 243.Google Scholar
  36. Fisher, L.A., and Fernstrom, J.D., 1981, Measurement of nonapeptides in pineal and pituitary using reversed phase, ion-pair liquid chromatography with post column detection by radioimmunoassay, Life Sci. 28 (13): 1471.Google Scholar
  37. Freire, F., and Cardinali, D.P., 1975, Effects of melatonin treatment and environmental lighting on the ultrastructural appearance, melatonin synthesis, nor-epinephrine turnover and mictotubule protein content of the rat pineal gland, J. Neural Transm. 37:237.Google Scholar
  38. Fujita, T., 1976, The gastro-enteric endocrine cell and its paraneuronic nature, in: “Chromaffin, Enterochromaffin and Related Cells”.A Naito Foundation Symposium, R.E.Coupland and T.Fujita, eds., Elsevier, Amsterdam-Oxford-New York.Google Scholar
  39. Geelen, G., Alievard-Burguburu, A.M., Gauquelin, G., Xiao, Y.Z., Frutoso, J., Gharib, Cl., Sempore, B., Meunier, C., and Augoyard, G., 1981, Radioimmunoassay of arginine vasopressin, oxytocin and argininevasotocin-like material in the human pineal gland, Peptide 2: 459.Google Scholar
  40. Gradwell, P.B., Millar, R.B., and Symington, R.B., 1976, Failure to demonstrate high concentrations of luteinizing hormone-releasing hormone in the bovine pineal body, S.A. Med. J. 50:217.Google Scholar
  41. Haldar-Misra, C., and Pévet, P., 1982a, The influence of noradrenaline on the process of protein/peptide secretion in the mammalian pineal organ. Comparative in vitro studies, Cell Tiss. Res. 224:33.Google Scholar
  42. Haldar-Misra, C., and Pévet, P., 1982b, Effect of melatonin on pineal peptide/protein synthesis: An ultra-structural study in the mouse pineal in vitro, Gen. Comp. Endocr. 46:356.Google Scholar
  43. Haldar-Misra, C., and Pévet, P., 1982c, The influence of different 5-methoxyindoles on the process of protein/peptide secretion in the mouse pineal gland. An in vitro study, submitted.Google Scholar
  44. Hofstätter, R., 1914, Ueber organotherapeutische Versuche mit Epigandol und Pineal-tabletten, Med. Klín. 10: 1460.Google Scholar
  45. Hofstätter, R., 1938, Pinealtherapie bei prämenstrueller Anfälligkeit, Zbl. Gyn. 62:1192.Google Scholar
  46. Holder, J.C., and Guerné, J.M., 1976, Une préparation particulièrement sensible à l’action de la vasotocine: le bulbe aortique de l’anguille d’eau douce, C.R. Acad. Sci. 283:1767.Google Scholar
  47. Holder, F.C., Pollatz, M., Schroeder, M.O., Guerné, J.M., Vivien-Roels, B., Pévet, P., Buijs, R.M., and Dogterom, J., 1982, A specific and sensitive bioassay for arginine-vasotocin: description, validation and some applications in lower and higher vertebrates, Gen. Comp. Endocr. in press.Google Scholar
  48. Jackson, I.M.D., Saperstein, R., and Reichlin, S., 1977, Thyrotropin releasing hormone (TRH) in pineal and hypothalamus of the frog: Effect of season and illumination, Endocrinology 100: 97.Google Scholar
  49. Joseph, S.A., 1976, Seasonal variation in luteinizing hormone releasing hormone (LHRH) content of rat pineal gland, Anat. Rec. 184:439 (abstract).Google Scholar
  50. Karasek, M., 1974, Ultrastructure of rat pineal gland in organ culture: influence of norepinephrine, dibutyryl cyclic adenosine 3–5-monophosphate and adenohypophysis, Endokrinologie 64 (1): 106.Google Scholar
  51. Karasek, M., 1979, Ultrastructural study of pineal-adenohypophysial relationships in rats, in: “The Pineal Gland of Vertebrates including Man”, J.Ariëns Kappers and P.Pévet, eds., Prog. Brain Res. 52: 195.Google Scholar
  52. Karasek, M., Bartke, A., King, T.S., Hansen, J.T., and Reirer, R.J., 1982a, Effects of hereditary hypopituitarism and ectopic pituitary transplants on pinealocytes of the mouse: A quantitative ultrastructural study, Endocrinology in press.Google Scholar
  53. Karasek, M., and Marek, K., 1978, Influence of gonadotropic hormones on the ultrastructure of rat pinealocytes, Cell Tiss. Res. 188:133.Google Scholar
  54. Karasek, M., and Marek, K., 1980, Influence of estradiol on the ultrastructure of rat pineal gland, Acta Med. Pol. 21:355.Google Scholar
  55. Karasek, M., Lewinska, I., Lewinski, A., Hansen, J.T., and Reiter, R.J., 1982b, Ultrastructure of rat pinealocytes, Cytobios in press.Google Scholar
  56. Karasek, M., Marek, J., and Kunert-Radek, J., 1978, Ultra-structure of rat pinealocytes in vitro: influence of gonadotropic hormones and LHRH, Cell Tiss. Res. 195: 547.Google Scholar
  57. Karasek, M., Pawlikowski, M., Ariëns Kappers, J., and Stepien, H., 1976a, Influence of castration followed by administration of LH-RH on the ultrastructure of rat pinealocytes, Cell Tiss. Res. 167:325.Google Scholar
  58. Karasek, M., Pawlikowski, M., Pévet, P., and Stepien, H., 1976b, Ultrastructure and fluorescence histochemical studies of the rat pineal gland after castration, Ann. Med. Sect. Pol. Acad. Sci. 21:57.Google Scholar
  59. Kastin, A.J., Nissen, C., Nikolics, K., Medzihradszky, K., Coy, D.H., Teplan, I., and Schally, A.V., 1976, Distribution of 3H-a-MSH in rat brain, Brain Res. Bull. 1:19.Google Scholar
  60. Kastin, A.J., Lawrence, S.P., and Coy, D.H., 1981, Radio-immunoassay of MIF/Tyr-MIF-1-like material in rat pineal, Pharmac. Biochem. Behay. 13:901.Google Scholar
  61. King, J.D., and Millar, R.P., 1981, Decapeptide luteinizing hormone releasing hormone in ovine pineal gland, J. Endocr. 91:405.Google Scholar
  62. Klein, D.C., Auerbach, D.A., Namboodiri, M.A.A., and Wheler, G.H.T., 1981, Indole metabolism in the mammalian pineal gland, in: “The Pineal Gland, Vol. I., Anatomy and Biochemistry”, R.J.Reiter, ed., CRC Press, Boca Raton, USA.Google Scholar
  63. Krasovich, M., and Benson, B., 1979, Effects of reserpine and p-chlorophenylalanine on the circadian rhythm of granulated vesicles in the pinealocytes of mice, Cell Tiss. Res. 203:457.Google Scholar
  64. Legros, J.J., Louis, F., Demoulin, A., and Franchimont, P., 1976, Immunoreactive neurophysins and vasotocin in human pineal glands, J. Endocrinol. 69:289.Google Scholar
  65. Lin, H.S., Hwang, B.H., and Tseng, C.Y., 1975, Fine structural changes in the hamster pineal gland after blinding and superior cervical ganglionectomy, Cell Tiss. Res. 158:285.Google Scholar
  66. Matthews, M.J., Benson, B., and Rodin, A.E., 1971, Antigonadotropic activity in a melatonin-free extract of human pineal glands, Life Sci. 10: 1375.Google Scholar
  67. Milcou, St., Milcou, I., and Nanu, L., 1963a, Le rôle de la glande pinéale dans le métabolisme des glucides, Ann. Endocrinol. 24:233.Google Scholar
  68. Milcu, I., Nanu, L., Marcean-Petrescu, R., and Milcu, St.-M., 1976, Precedeu de obtinere a unui preparat opoterapic de glanda pinealà, Brevet OSIM,nr 63: 948.Google Scholar
  69. Milcu, S.M., Pavel, S., and Neacsu, C., 1963b, Biological and chromatographic charactérization of a polypeptide with pressor and oxytocic activities isolated from bovine pineal gland, Endocrinology 72: 563.Google Scholar
  70. Millar, R.P., and Tobler, C., 1981, Structural and functional differences in pineal and hypothalamic luteinizing hormone-releasing hormone, in: “Neuropeptides: Biochemical and Physiological Studies”, R.P.Millar, ed., Churchill Livingstone, New York.Google Scholar
  71. Millar, R.P., Denniss, P., Tobler, C., and Symington, R. B., 1981, Immunological, biochemical and functional differences in pineal and hypothalamic luteinizing hormone-releasing hormone, in: “Pineal Function”, C.D.Matthews and R.F.Seamark, eds., Elsevier/NorthHolland Biomed. Press, Amsterdam.Google Scholar
  72. Miller, M., Fahrenkrug, J., and Ottesen, B., 1981, The presence of vasoactive intestinal peptide (VIP) in nerve fibres connecting the brain and the pineal gland of the cat, EPSG-Newsletter suppl. 3: 45.Google Scholar
  73. Moszkowska, A., Citharel, A., L’Heritier, A., Ebels, I., and Laplante, E., 1974, Some new aspects of a sheep pineal gonadotropin inhibiting activity in in vitro experiments, Experientia 30: 964.Google Scholar
  74. Moszkowska, A., Scemama, A., Lombard, M.N., and Héry, M., 1973, Experimental modulation of hypothalamic content of the gonadotropin releasing factor by pineal factors in the rat, J. Neural Transm. 34:11.Google Scholar
  75. Neacsu, C., 1971, Structure-activity data on a pineal peptide with oxytocic and vasopressor activities, Excerpta Medica, Int. Congr. Series 241:275, Excerpta Medica, Amsterdam.Google Scholar
  76. Neacsu, C., 1972, The mechanisms of antigonadotropic ac-tion of polypeptide extracted from a bovine pineal gland, Rev. Roum. Physiol. 9:161.Google Scholar
  77. Negro-Vilar, A., Sanchez-Franco, F., Kwiatkowski, M., and Samson, W.K., 1980, Failure to detect radioimmunoassayable arginine vasotocin in mammalian pineals. Brain Res. Bull. 4:789.Google Scholar
  78. Noteborn, H.P.J.M., Ebels, I., Pévet, P., Reinharz, A.C., Neacsu, C., and Salemink, C.A., 1982, Comparison of some peptidergic and proteic ovine pineal fractions with a bovine E5 pineal fraction, J. Neural Transm. in press.Google Scholar
  79. Nürnberger, F., and Korf, H.W., 1981, Oxytocin-and vasopressin-immunoreactive nerve fibres in the pineal gland of the hedgehog, Erinaceus europaeus L., Cell Tiss. Res., 220: 87Google Scholar
  80. O’Donohue, T.L., Miller, R.L., and Jacobowitz, D.M., 1979, Identification, characterization and stereotaxic mapping of intraneuronal a-melanocyte stimulating hormone-like immunoreactive peptides in discrete regions of the rat brain, Brain Res., 176: 101.PubMedCrossRefGoogle Scholar
  81. O’Donohue, T.L., Miller, R.L., Pendleton, R.C., and Jacobowitz, D.M., 1980, Demonstration of an endogenous circadian rhythm of a-melanocyte stimulating hormone in the rat pineal gland, Brain Res. 186: 145.Google Scholar
  82. Oliver, C., and Porter, J.C., 1978, Distribution and characterization of a-melanocyte-stimulating hormone in the rat brain, Endocrinology 102: 3.Google Scholar
  83. Ota, M., Horiuchi, S., and Obara, K., 1975, Inhibition of ovulation induced with PMS and HCG by a melatoninfree extract of bovine pineal powder, Neuroendocrinology 18: 311.Google Scholar
  84. Orts, R.G., Liao, T.H., Sartin, J.L., and Bruot, B.C., 1980, Isolation, purification and amino acid sequence of a tripeptide from bovine pineal tissue displaying antigonadotropic properties, Biochem. Biophys. Acta 628:201.Google Scholar
  85. Parhon, C.I., Milcu, S.M., and Tomorug, E., 1940, Augmentation pondérale sous l’influence d’un extrait épiphysaire (l’épiphysormone), Bull. Soc. roumain. Endocr. 6:122.Google Scholar
  86. Pavel, S., 1978, Arginine vasotocin as a pineal hormone, J. Neural Transm. 13:135.Google Scholar
  87. Pavel, S., 1979, The mechanism of action of vasotocin in the mammalian brain, in: “The Pineal Gland of Vertebrates, including Man”, J.Ariëns Kappers and P.Pévet, eds., Prog. Brain Res., 52: 445, Elsevier, Amsterdam.Google Scholar
  88. Pavel, S., and Petrescu, S., 1966, Inhibition of gonadotrophin by a highly purified pineal peptide and by synthetic arginine-vasotocin, Nature 212: 10–54.Google Scholar
  89. Pavel, S., Goldstein, R., and Calb, M., 1975,. Vasotocin content in the pineal gland of foetal, newborn and adult male rats, J. Endocrinol. 66:283.Google Scholar
  90. Pearse, A.G.E., 1969, The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implication of the concept, J. Histochem. Cytochem.,17:303.Google Scholar
  91. Pelletier, G., Leclerc, R., Dubé, D., Labrie, F., Buciani, R., Arimura, A., and Schally, A.V., 1975, Localization of growth-hormone release inhibiting hormone (somatostatin) in the rat brain, Am. J. Anat. 142: 397.Google Scholar
  92. Petit, A., 1976, Contribution à l’étude de l’épiphyse des Reptiles: le complèxe épiphysaire des lacerti-liens et l’épiphyse des ophidiens: Etude embryologique, structurale; analyse qualitative et quantitative de la sérotonin dans les conditions normales et expérimentales. Thèse, Strasbourg.Google Scholar
  93. Pévet, P., 1974, The pineal gland of the mole (Talpa europaea L.). I. Fine structure of the pinealocytes, Cell Tiss. Res. 153:277.Google Scholar
  94. Pévet, P., 1976, Correlations between pineal gland and sexual cycle. An electron microscopical and histochemical investigation on the pineal gland of the hedgehog, mole, mole-rat and white rat. Thesis, Amsterdam.Google Scholar
  95. Pévet, P., 1977, The pineal gland of the mole (Talpa europaea L.). IV. Effect of pronase on material present in cisternae of the granular endoplasmic reticulum of pinealocytes. Cell Tiss Res. 182: 215.Google Scholar
  96. Pévet, P., 1979, Secretory processes in the mammalian pinealocytes under natural and experimental conditions, in: “The Pineal Gland of Vertebrates including Man”, J.Ariëns Kappers and P.Pévet, eds., Prog. Brain Res. 52; Elsevier, Amsterdam.Google Scholar
  97. Pévet, P., 1981a, Ultrastructure of the mammalian pinealocyte, in: “The Pineal Gland, Vol. I, Anatomy and Biochemistry”, R.J.Reiter, ed., CRC Press, Boca Raton, USA.Google Scholar
  98. Pévet, P., 1981b, Peptides in the pineal gland of vertebrates: ultrastructural, histochemical, immunocytochemical and radioimmunological aspects, in: “The Pineal Organ: Photobiology - Biochronometry - Endocrinology”, A.Oksche and P.Pévet, eds., Elsevier/ North-Holland Biomed. Press, Amsterdam.Google Scholar
  99. Pévet, P., 1981c, Cytological aspects of indoleamine secretion in the pineal gland, in: “Melatonin - Current Status and Perspectives”, N.Birau and W.Schloot, eds., Pergamon Press, Oxford.Google Scholar
  100. Pévet, P., 1982a, Pineal peptides in the fetus and in young and adult mammals, in: Melatonin Rhythm“, D.C.Klein, ed., Karger, Basel, in press.Google Scholar
  101. Pévet, P., 1982b, The anatomy of the pineal gland of mammals, in: “The Pineal Gland”, R.Relkin, ed.,Elsevier/North-Holland, New York, in press.Google Scholar
  102. Pévet, P. and Haldar-Misra, C., 1982, Effect of 5-methoxytryptamine on testicular atrophy induced by experimental or natural short photoperiod in the golden hamster (Mesocricetus auratus), J. Neural Transm. in press.Google Scholar
  103. Pévet, P., and Saboureau, M., 1973, L’épiphyse du Hérisson (Erinaceus europaeus L.) mâle. I. Les pinéalocytes et leurs variations ultrastructurales considérées au cours du cycle sexuel, Z.Zellforsch. 143: 367Google Scholar
  104. Pévet, P., and Saboureau, M., 1974, Effect of serotonin administration on the ultrastructure of pinealocytes during the period of maximal sexual activity of the male hedgehog (Erinaceus europaeus L.), Experientia (Basel), 30: 1069.Google Scholar
  105. Pévet, P., and Smith, A.R., 1975, The pineal gland of the mole (Talpa europaea, L.). Ultrastructural variations observed in the pinealocytes during different parts of the sexual cycle, J. Neural Transm. 36: 227Google Scholar
  106. Pévet, P., and Swaab, D.F., 1979, Immumocytochemical evidence for the presence of an a-MSH-like compound in the rat pineal, J. Physiol. Paris, 75:75.Google Scholar
  107. Pévet, P., Balemans, M.G.M., Legerstee, W.C., and VivienRoels, B., 1980a, Circadian rhythmicity of the activity of HIOMT in the formation of melatonin and of 5methoxytryptophol in the pineal, retina, and Harderian gland of the golden hamster, J. Neural Transm. 49:229.Google Scholar
  108. Pévet, P., Buijs, R.M., Dogterom, J., Vivien-Roels, B., Holder, F.C., Guerné, J.M., Reinharz, A., Swaab, D. F., Ebels, I., and Neacsu, C., 1981a, Peptides in the mammalian pineal gland, in: Pineal Function“, C.D. Matthews and R.F.Seamark, eds., Elsevier/North-Holland, Amsterdam.Google Scholar
  109. Pévet, P., Dogterom, J., Buijs, R.M., and Reinharz, A., 1979, Is it the vasotocin or a vasotocin-like peptide which is present in the mammalian pineal and subcommissural organ?, J. Endocrinol. 80:49.Google Scholar
  110. Pévet, P., Ebels, I., Swaab, D.F., Mud, M., and Arimura, A., 1980b, Presence of AVT-, a-MSH-, LHRH- and somatostatin-like compounds in the rat pineal gland and their relationship with the UMO5R pineal fraction: An immunocytochemical study, Cell Tiss. Res. 200:341.Google Scholar
  111. Pévet, P., Haldar-Misra, C., and Öcal, T., 1981b, The independency of an intact pineal gland of the inhibition by 5-methoxytryptamine of the reproductive organs in the male hamster, J. Neural Transm., 52: 95.PubMedCrossRefGoogle Scholar
  112. Pévet, P., Juillard, M.T., Smith, A.R., Kappers, J.Ariëns, 1976, The pineal gland of the mole (Talpa europaea L.). III. A fluorescence histochemical study. Cell Tiss. Res. 165:297.Google Scholar
  113. Pévet, P., Neacsu, C., Holder, F.C., Reinharz, A., Dogterom, J., Buijs, R.M., Guerné, J.M., and Vivien-Roels, B., 1981c, The vasotocin-like biological activity present in the bovine pineal is due to a compound different from vasotocin, J. Neural Transm. 51:295.Google Scholar
  114. Pévet, P., Reinharz, A.C., and Dogterom, J., 1980c, Neurophysins, vasopressin and oxytocin in the bovine pineal gland, Neurosci. Lett. 16:301.Google Scholar
  115. Pévet, P., Smith, A.R., Van de Kar, L., and Van Bronswijk, H., 1975, Effect of castration on the rat pineal gland: a fluorescence histochemical and biochemical study, Experientia 31: 1237.Google Scholar
  116. Piekut, D.T., and Knigge, K.M., 1981, Immunocytochemical analysis of the rat pineal gland using antisera generated against luteinizing hormone-releasing hormone (LHRH), J. Histochem. Cytochem. 29:616.Google Scholar
  117. Powel, O., Krabanek, S., and Cannon, D., 1977, Substance P: radioimmunoassay studies, in: “Substance P”, U.S. Von Euler and B.Pernow, eds., Raven Press, New York.Google Scholar
  118. Redding, T.W., and Schally, A.V., 1973, The distribution halflife and excretion of tritiated luteinizing hormone-releasing hormone (LHRH) in rats, Life Sci. 12: 23Google Scholar
  119. Redding, T.W., Kastin, A.J., Nair, R.M.G., and Schally, A.V., 1973, Distribution, half-life and excretion of 14C- and 3H-labeled L-Prolyl-L-Leucyl-Glycinamide in the rat, Neuroendocrinology 11: 92.Google Scholar
  120. Reinharz, A., Valloton, M.B., Pévet, P. and Dogterom, J., 1981, Neurophysins and neurohormones in the mammalian pineal gland, in: “Pineal Function”, C.D.Matthews and R.F.Seamark, eds., Elsevier/North-Holland, Amsterdam.Google Scholar
  121. Reiter, R.J., and Vaughan, M.K., 1977, Pineal ant.lgonadotrophic substances: polypeptides and indoles, Life Sci. 21: 139.Google Scholar
  122. Rix, E., Hackenthal, E., Hilgenfeld, U., and Taugner, R., 1981, Neuropeptides in the pineal gland? A critical immunocytochemical study, Histochemistry 72: 33.CrossRefGoogle Scholar
  123. Romijn, H.J., 1975, The ultrastructure of the rabbit pineal gland after sympathectomy, parasympathectomy, continuous illumination and continuous darkness, J. Neural Transm. 36: 183.PubMedCrossRefGoogle Scholar
  124. Romijn, H.J., and Gelsema, A.J., 1976, Electron miscoscopy of the rabbit pineal organ in vitro. Evidence of norepinephrine-stimulated secretory activity of the Golgi apparatus, Cell Tiss. Res. 172:365.Google Scholar
  125. Rosenbloom, A.A., and Fisher, D.A., 1975, Radioimmunoassayable AVT and AVP in adult mammalian brain tissue: comparison of normal and Brattleboro rats, Neuroendocrinol. 17: 354.Google Scholar
  126. Rossier, J., Vargo, T.M., Minick, S., Ling, N., Bloom, F.E., and Guillemin, R., 1977, Regional dissociation of 13-endorphin and enkephalin contents in rat brain and pituitary. Proc. Natl. Acad. Sci. USA 74: 5162.PubMedCrossRefGoogle Scholar
  127. Roux, M., and Richoux, J.P., 1981, Effets de l’énucléation oculaire bilaterale sur l’ultrastructure de l’épiphyse chez la femelle du Lérot (Eliomys quercinus L.). Correlations avec l’axe hypothalamo-hypophyse-ovarien, Reprod. Nutr. Develop.,21:47.Google Scholar
  128. Roux, M., Richoux, J.P., and Cordonnier, J.L., 1977, Influence de la photopériode sur l’ultrastructure de l’épiphyse avant et pendant la phase génitale saisonnière chez la femelle du Lérot (Eliomys quercinus). J. Neural Transm. 41:209.Google Scholar
  129. Rudman, D., Del Rio, A.E., Garcia, L.A., Barnett, J., Bixler, T., and Hollins, B., 1970, Lipolytic substances in bovine, thyroid, parotid and pineal glands, Endocrinology 87: 27.Google Scholar
  130. Rudman, D., and Scott, J.W., 1975, Melanotropic-lipolytic peptides of the pineal gland and other CNS regions, in:“Frontiers of Pineal Physiology”,M.D.Altschule, ed., MIT Press, Cambridge, Mass.Google Scholar
  131. Sheridan, M.N., 1975, Pineal gland fine structure, in: “Brain-Endocrine Interactions”, vol. 2 (The Ventricular System), 2nd Int. Symp., Shizuko, pp. 324.Google Scholar
  132. Smith, A.R., 1972, Conditions influencing the serotonin and tryptophan metabolism in the epiphysis cerebri of the rabbit. A fluorescence histochemical, microscopic and electrophoretic study. Thesis, Amsterdam.Google Scholar
  133. Smith, A.R., Jongkind, J.F., and Kappers, J.Ariéns, 1972a, Distribution and quantification of serotonin-containing and autofluorescent cells in the rabbit pineal organ, Gen. Comp. Endocr. 18(2):364.Google Scholar
  134. Smith, A.R., Kappers, J.Ariëns, and Jongkind, J.F., 1972b, Alterations in the distribution of yellow fluorescing rabbit pinealocytes produced by p-chlorophenylalanine and different conditions of illumination, J. Neural Transm. 33:91.Google Scholar
  135. Smith, A.R., Pévet, P., Van de Kar, L., and Van Oostrom, R., 1975, Effect of gonadotropic hormones on the rat pineal gland. A fluorescence histochemical and biochemical study, J. Neural Transm. 36:217.Google Scholar
  136. Swaab, D.F., 1982, Neuropeptides: their distribution and function in the brain. in: “Chemical Transmission in the Brain”, R.M.Buijs, P.Pévet and D.F.Swaab, eds., Prog. Brain Res. 55, in press.Google Scholar
  137. Thiéblot,L., Grizard, G., Dastugue, B., Gachon, A.M., et Thiéblot, Ph., 1979, Purification du facteur antigonadotrope de la glande pinéale, Ann. Endocrinol. 40:519.Google Scholar
  138. Trentini, G.P., De Gaetani, C.F., Di Gregorio, C., and Botticelli, C.S., 1980, LHRH incorporation in normal and denervated pineal gland and in pineal gland of rats with constant estrous-anovulatory syndrome: a preliminary study, Endokrinologie 76: 6.Google Scholar
  139. Uddman, R., Alumets, J., Hâkanson, R., Lorén, I., and Sundler, F., 1980, Vasoactive intestinal peptide (VIP) occurs in nerves of the pineal gland, Experientia 36: 1119.Google Scholar
  140. Ueck, M., and Wake, K., The pinealocyte - a paraneuron? A review. Arch. histol. jap.,40:suppl. 261.Google Scholar
  141. Ueck, N., and Wake, K., 1979, The pinealocyte. A para-neuron, in:“The Pineal Gland of Vertebrates including Man”, J.Ariëns Kappers and P.Pévet, eds., Prog. Brain Res. 52, Elsevier, Amsterdam.Google Scholar
  142. Vaudry, M., Tonin, M.C., DeLarue, L., Vaillant, R., and Kraicer, J., 1978, Biological and radioimmunological evidence for melanocyte stimulating hormones (MSH) of extrapituitary origin in the rat brain, Neuroendocrinology 27: 9.Google Scholar
  143. Vaughan, M.K., 1981, Arginine vasotocin and vertebrate reproduction, in: “The Pineal Gland, vol. II, Reproductive Effects”,R.J.Reiter, ed., CRC Press, Boca Raton, USA.Google Scholar
  144. Vaughan, M.K., and Blask, D.E., 1978, Arginine vasotocin - A search for its function in mammals, in:“The Pineal and Reproduction”, R.J.Reiter, ed., Progr. Re-prod. Biol. 4:99, Karger, Basel.Google Scholar
  145. Vaughan, M.K., Reiter, R.J., McKinney, T., and Vaughan, G.M., 1974, Inhibition of growth of gonadal dependent structures by arginine vasotocin and purified bovine pineal fractions in immature mice and hamsters, Int. J. Fertil. 19:103.Google Scholar
  146. Vivien, J.H., 1965, Signe de stimulation des activités secrétoires des pinéalocytes chez la couleuvre, Tropidonotus natrix, L. traitée par des principes gonadotropes, C.R. Acad. Sci. 260:5370.Google Scholar
  147. Vivien-Roels, B., Guerné, J.M., Holder, F.C., and Schroeder, M.D., 1979, Comparative immunohistochemical, radioimmunological and biological attempts to identify arginine-vasotocin (AVT) in the pineal gland of reptiles and fishes, in: “The Pineal Gland of Vertebrates including Man”, J.Ariëns Kappers and P.Pévet, eds., Prog. Brain Res., Elsevier-North-Holland Biomed. Press, Amsterdam.Google Scholar
  148. Vivien-Roels, B., Pévet, P., Guerné, J.M., Holder, F.C., Meiniel, A., Dogterom, J., and Buijs, R.M., 1981, On the presence of arginine-vasotocin (AVT) in the pineal organ of non-mammalian vertebrates, in: “Pineal Function”, C.D.Matthews and R.F.Seamark, eds., Elsevier/North-Holland, Amsterdam.Google Scholar
  149. Vizsolyi, E., and Perks, A.M., 1976, Neurohypophysial hormones in fetal life and pregnancy. I. Pharmacological studies in the sheep (ovis aries), Gen. Comp. Endocrinol., 29: 28.PubMedCrossRefGoogle Scholar
  150. Vollrath, L., 1981, The pineal organ, in: “Handbuch der mikroskopischen Anatomie des Menschen”, VI /7, Springer, Berlin.Google Scholar
  151. Vuolteenaho, O., and Leppäluoto, J., 1981, Immunoreactive ACTH in rat pineal: stress and dexamethasone lower the concentration. Acta Physiologica 112: 491.Google Scholar
  152. Vuolteenaho, O., Vakkuri, O., and Leppäluoto,J., 1980, Wide distribution of (3-endorphin-like immunoreactivity in extrapituitary tissues of rat, Life Sci. 27: 57Google Scholar
  153. Weindl, A., and Sofroniew, M.V., 1982, Peptide neurohormones and circumventricular organs in the pigeon, in: “Cerebrospinal Fluid (CSF) and Peptide Hormones”, E.M.Rodriguez and Tj.B.van Wimersma Greidanus, eds., Karger, Basel.Google Scholar
  154. Wheaton, J.E., 1980, Immunoreactive luteinizing hormone releasin hormone (LH-RH) in ovine pineal glands, Horm. Metab. Res. 12:314.Google Scholar
  155. White, W.F., Hedlund, M.T., Weber, G.F., Rippel, R.M., Johnson, E.S., and Wilber, J., 1974, The pineal gland: A supplementary source of hypothalamic releasing hormones, Endocrinology 94, 5: 1422.Google Scholar
  156. Wilber, J.F., Montoya, E., Plotnikoff, M.P., White, W,F., Gendrich, R., Renaud, L.P. and Martin, J.P., 1976, Gonadotropin-releasing hormone and thyrotropin-releasing hormone: distribution and effects in the central nervous system, Recent Prog. Horm.Res. 32: 117Google Scholar
  157. Wurtman, R.J., Axelrod, J., and Potter, L.T., 1964, The uptake of H3-melatonin in endocrine and nervous tissues and the effects of constant light exposure, J. Pharmacol. Exp. Ther. 143:314.Google Scholar
  158. Youngblood, W.W., Humm, J., and Kizer, J.S., 1979, TRH-like immunoreactivity in rat pancreas and eyes, bovine and sheep pineals, and human placenta: Nonidentity with synthetic pyroglu-His-Pro-NH2 (TRH), Brain Res. 163: 101.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Paul Pévet
    • 1
    • 2
  1. 1.The Netherlands Institute for Brain ResearchAmsterdamThe Netherlands
  2. 2.Dept. of Anatomy and EmbryologyUniversity of AmsterdamThe Netherlands

Personalised recommendations