The Use of Electron Microscopy and Stereology in the Study of the Mammalian Pineal Gland

  • Lutz Vollrath
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 65)


Now that transmission electron microscopy (TEM) has been used for many years to study the pineal gland it is timely to evaluate what progress has been achieved by using this technique and to speculate which aspects of pineal research may benefit most by its application in the future.


Pineal Gland Ground Squirrel Pineal Region Pineal Organ Stereological Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ades, H. W. and Engström, H., 1974, Anatomy of the inner ear. In: Handbook of Sensory Physiology, V/1. Auditory System. Anatomy, Physiology (Ear). W.D. Keidel, W.D. Neff, eds. p. 125. Springer, Berlin-Heidelberg-New YorkGoogle Scholar
  2. Baird, I. L., 1974, Anatomical features of the inner ear in submammalian vertebrates. In: Handbook of Sensory Physiology, V/1: 159. Auditory System. Anatomy, Physiology (Ear). W.D. Keidel, W.D. Neff, eds. Springer, Berlin-Heidelberg-New YorkGoogle Scholar
  3. Benson, B. and Krasovich, M., 1977, Circadian rhythm in the number of granulated vesicles in the pinealocytes of mice. Effects of sympathectomy and melatonin treatment. Cell Tiss. Res. 184: 499.Google Scholar
  4. Collin, J.-P., 1981, New data and vistas on the mechanisms of secretion of proteins and indoles in the mammalian pinealocyte and its phylogenetic precursors; the pinealin hypothesis and preliminary comments on membrane traffic. In: The Pineal Organ: Photobiology-Biochronometry-Endocrinology. A. Oksche, P. Pévet, eds., p. 187. Elsevier/North Holland Biomedical Press, Amsterdam,New York, Oxford.Google Scholar
  5. Fassbender, E., 1962, Topographie and mikroskopisch-anatomischer Feinbau der Epiphysis cerebri des Pferdes. Gegenbaurs morphol. Jb. 103: 457.Google Scholar
  6. Hopsu, V. K. and Arstila, A. V., 1965, An apparent somatosomatic synaptic structure in the pineal gland of the rat. Exp. Cell. Res. 37: 484.PubMedCrossRefGoogle Scholar
  7. Hortega, P. del Rio, 1922, Contitucien histológica de la glândula pineal. Arch. de Neurobiol. 3: 359.Google Scholar
  8. Juillard, M.-Th. and Collin, J.-P., 1980, Pools of serotonin in the pineal gland of the mouse: The mammalian pinealocyte as a component of the diffuse neuroendocrine system. Cell Tiss. Res. 213: 273.Google Scholar
  9. Kachi, T., 1979, Demonstration of circadian rhythm in granular vesicle number in pinealocytes of mice and the effect of light: semiquantitative electron microscopic study. J. Anat. 129: 603PubMedGoogle Scholar
  10. Kappers, J. A., 1971, Discussion remark. In: The pineal gland. G.E. Wolstenholme, J. Knight, eds. p. 121 Churchill Livingstone, Edinburgh-LondonGoogle Scholar
  11. Karasek, M. and Vollrath, L., 1982, “Synaptic”; ribbons and spherules of the rat pineal gland: Day/night changes in vitro? Exp. Brain Res. 46: 205.PubMedCrossRefGoogle Scholar
  12. Karasek, M., King, T. S. and Petterborg, L. J., 1982a, Dense-core vesicles in the mammalian pinealocyte and their relation to secretory processes. TSEM Journal 13: 13.Google Scholar
  13. Karasek, M., King, T. S., Brokaw, J., Hansen, J. T., Petterborg, L.J. and Reiter, R. J., 1982b, Inverse correlation between “synaptic”; ribbon number and the density of adrenergic nerve endings in the pineal gland of various mammals. J. Comp. Neurol. (in press)Google Scholar
  14. King, T. S. and Dougherty, W. J., 1980, Neonatal development of circadian rhythm in “synaptic”; ribbon numbers in the rat pinealocyte. Amer. J. Anat. 157: 335.PubMedCrossRefGoogle Scholar
  15. Krasovich, M. and Benson, B., 1982, A study of the relationship between photoperiod and pinealocyte granulated vesicles in the golden Syrian hamster. Cell Tiss. Res. 223: 155.Google Scholar
  16. Krstie, R., 1975, Scanning electron microscope observations in the canaliculi in the rat pineal gland. Experientia 31: 1072CrossRefGoogle Scholar
  17. Krstié, R., 1977, Glande pinéale de Rat. Analyse morphométrique aux microscopes photonique et électronique. Labirint, str.: 121.Google Scholar
  18. Kurumado, K. and Mori, W., 1977, A morphological study of the circadian cycle of the pineal gland of the rat. Cell Tiss. Res. 182: 565.Google Scholar
  19. Lang, K., 1959, Anatomische und histologische Untersuchungen der Epiphysis cerebri von Rind und Schaf. Thesis, MünchenGoogle Scholar
  20. Leonhardt, H., 1967, Über axonähnliche Fortsätze, Sekretbildung und Extrusion der hellen Pinealozyten des Kaninchens. Z. Zellforsch. Mikrosk. Anat. 82: 307.Google Scholar
  21. Lew, G. M., Payer, A. and Quay, W. B., 1982, The pinealocyte nucleolus. Ultrastructural and stereological analysis of twenty-four-hour changes. Cell Tiss. Res. 224: 195.Google Scholar
  22. Lu, K.-S. and Lin, H.-S., 1979, Cytochemical studies on cytoplasmic granular elements in the hamster pineal gland. Histochem. J. 61: 177.Google Scholar
  23. Lues, G., 1971, Die Feinstruktur der Zirbeldrüse normaler, trächtiger und experimentell beeinflußter Meerschweinchen. Z. Zellforsch. Mikrosk. Anat. 114: 38.Google Scholar
  24. McNulty, J. A., 1981, Synaptic ribbons in the pineal organ of the goldfish: Circadian rhythmicity and the effects of constant light and constant darkness. Cell Tiss. Res. 215: 491.Google Scholar
  25. McNulty, J. A. and Dombrowski, T. A., 1980, Ultrastructural evidence for seasonal changes in pinealocytes of the 13-lined ground squirrel, Sjermophilus tridecemlineatus: A qualitative and quantitative study. Anat. Rec. 196: 387.Google Scholar
  26. Pévet, P., 1977, On the presence of different populations of pinealocytes in the mammalian pineal gland. J. Neural Transm. 40: 289.PubMedCrossRefGoogle Scholar
  27. Pévet, P., 1979, Secretory processes in the mammalian pinealocyte under natural and experimental conditions. Progr. Brain Res. 52: 149.Google Scholar
  28. Pévet, P., 1981a, Ultrastructure of the mammalian pinealocyte. In: The Pineal Gland. Vol I. Anatomy and Biochemistry. R.J. Reiter, ed. p. 121. CRC Press, Boca Raton, Florida.Google Scholar
  29. Pévet, P., 1981b, Peptides in the pineal gland of vertebrates. Ultrastructural, histochemical, immunocytochemical and radioimmunological aspects. In: The Pineal Organ: Photobiology-Biochronometry-Endocrinology. A. Oksche, P. Pévet, eds., p. 211. Elsevier/North-Holland Biomedical Press. Amsterdam-New York-Oxford.Google Scholar
  30. Pévet, P. and Collin, J. P., 1976, Les pinéalocytes de Mammifère: Diversité, homologies, origine. Etude chez la Taupe adulte (Talpa europaea L.) J. Ultrastr. Res. 57: 22.Google Scholar
  31. Quay, W. B., 1973, Twenty-four-hour rhythmicity of pineal canaliculi and evidence for their intrinsic humoral regulation. The Physiologist 16: 427.Google Scholar
  32. Quay, W. B., 1974, Pineal canaliculi: demonstration, twenty-four-hour rhythmicity and experimental modification. Amer. J. Anat. 139: 81.Google Scholar
  33. Romijn, H. J., 1973, Structure and innervation of the pineal gland of the rabbit, Oryctolagus cuniculus (L.) H. An electron microscopic investigation of the pinealocytes. Z. Zellforsch. Mikrosk. Anat. 141: 545.Google Scholar
  34. Romijn, H.J., 1975, The ultrastructure of the rabbit pineal gland after sympathectomy, parasympathectomy, continuous illumination, and continuous darkness. J. Neural Transm. 36: 183.PubMedCrossRefGoogle Scholar
  35. Romijn, H. J., Mud, M. T. and Wolters, P. S., 1976, Diurnal variations in number of Golgi-dense core vesicles in light pinealocytes of the rabbit. J. Neural Transm. 38: 231.PubMedCrossRefGoogle Scholar
  36. Schneider, T., Semm, P. and Vollrath, L., 1981, Ultrastructural observations on the central innervation of the guinea-pig pineal gland. Cell Tiss. Res. 220: 41.Google Scholar
  37. Semm, P. and Vollrath, L., 1980, Electrophysiological evidence for circadian rhythmicity in a mammalian pineal organ. J. Neural Transm. 47: 181.PubMedCrossRefGoogle Scholar
  38. Theron, J. J., Biagio, R., Meyer, A. C. and Boekkooi, S., 1979, Microfilaments, the smooth endoplasmic reticulum and synaptic ribbon fieldsin the pinealocytes of the baboon (Papio ursinus). Am. J. Anat. 154: 151.Google Scholar
  39. Theron, J. J., Biagio, R. and Meyer, A. C., 1981, Circadian changes in microtubules, synaptic ribbons and synaptic ribbons fields in the pinealocytes of the baboon (Papio ursinus). Cell Tiss. Res. 217: 405Google Scholar
  40. Vollrath, L., 1973, Synaptic ribbons of a mammalian pineal gland. Circadian changes. Z. Zellforsch. Mikrosk. Anat. 145: 171.Google Scholar
  41. Vollrath, L., 1979, Comparative morphology of the vertebrate pineal complex. Progr. Brain Res. 52: 25.Google Scholar
  42. Vollrath, L., 1981a, The Pineal Organ. In: Hdb. mikr. Anat. Mensch. A. Oksche, L. Vollrath, eds. Vol. VI/7. Springer, Berlin-Heidelberg-New York.Google Scholar
  43. Vollrath, L., 1981b, Cytology of rhythmic phenomena in the pineal organ. In: The Pineal Organ: Photobiology- Biochronometry-Endocrinology.Google Scholar
  44. A. Oksche, P. Pévet, eds. p.139. Elsevier/North-Holland Biomedical Press, Amsterdam-New York-Oxford.Google Scholar
  45. Vollrath and Huss, 1973, The synaptic ribbons of the guinea-pig pineal gland under normal and experimental conditions. Z. Zellforsch. Mikrosk. Anat. 139: 417.PubMedCrossRefGoogle Scholar
  46. Vollrath, L., Kantarjian, A. and Howe, C., 1975, Mammalian pineal gland: 7-day rhythmic activity? Experientia 31: 458.PubMedCrossRefGoogle Scholar
  47. Vollrath, L., Becker, U., Diehl, B. J. M., Schühle, A. and Welker, H., 1981, Rhythmic changes in the rat pineal gland. In: Pineal Function. C.D. Matthews, R.F. Seamark, eds. p. 217. Elsevier/North-Holland Biomedical Press, Amsterdam-New York-OxfordCrossRefGoogle Scholar
  48. Wallen, E. P. and Yochim, J. M., 1974, Rhythmic function of pineal hydroxyindole-O-methyl transferase during the estrous cycle: An analysis. Biol. Reprod. 10: 461Google Scholar
  49. Wartenberg, H., 1968, The mammalian pineal organ: Electron microscopic studies on the fine structure of pinealocytes, glial cells and on the perivascular compartment. Z. Zellforsch. Mikrosk. Anat. 86: 74.Google Scholar
  50. Weibel, E. R., 1969, Stereological principles for morphometry in electron microscopic cytology. Int. Rev. Cytol. 26: 235.Google Scholar
  51. Weibel, E. R., 1979, Stereological methods. Vol. 1: Practical methods for biological morphometry. Academic Press, London- New York-Toronto.Google Scholar
  52. Weibel, E. R., 1980, Stereological methods. Vol. 2: Theoretical foundations. Academic Press, London-New York-TorontoGoogle Scholar
  53. Welker, H. A., Schühle, A. and Vollrath, L., 1982, Infradian rhythms of serotonin and serotonin-N-acetyltransferase in the pineal gland of male rats. J. interdiscipl. Cycle Res. (in press).Google Scholar
  54. Welsh, M. G., Cameron, I. L. and Reiter, R. J., 1979a, The pineal gland of the gerbil, Meriones unguiculatus. II. Morpho-metric analysis over a 24-hour period. Cell Tiss. Res. 204: 95.Google Scholar
  55. Welsh, M. G., Hansen, J. T. and Reiter, R. J., 1979b, The pinealGoogle Scholar
  56. gland of the gerbil, Meriones unguiculatus. III. Morpho-metric analysis and fluorescence histochemistry in the intact and sympathetically denervated pineal gland. Cell Tiss. Res. 204: 111.Google Scholar
  57. Wersäll, J. and Bagger-Sjöbäck, D., 1974, Morphology of the vestibular sense organ. In: H. H. Kornhuber, ed. Handbook of Sensory Physiology, Vol. VI,1, p. 123. Springer, Berlin-Heidelberg-New York.Google Scholar
  58. Zach, B., 1960, Topographie und mikroskopisch-anatomischer Feinbau der Epiphysis cerebri von Hund und Katze. Zentralbi. Veterinärmed. 7: 273.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Lutz Vollrath
    • 1
  1. 1.Department of AnatomyJohannes Gutenberg-UniversityMainzFederal Republic of Germany

Personalised recommendations