Melatonin Secretion — A Biological Marker for Human Pineal Adrenergic Function

  • Alfred J. Lewy
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 65)

Abstract

Spanning the last 20 years, hundreds of anatomical and pharmacological studies have indicated that melatonin secretion by the mammalian pineal gland is an ideal “biological marker” for adrenergic function, the endogenous circadian pacemaker, and the effects of light. Nighttime beta-adrenergic stimulation of melatonin synthesis provides the theoretical basis for using the pineal as a model of adrenergic function. The biochemical steps resulting in melatonin synthesis appear to be intricately coordinated.

Keywords

Multiple System Atrophy Pineal Gland Melatonin Level Melatonin Secretion Melatonin Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arendt, J., 1981, Current status of assay methods of melatonin, in: Melatonin.and. Current Status and Perspectives, Advances in the Biosciences, vol. 29, N. Birau, and W. Schloot, eds., Pergamon Press, New York, pp. 3–7.CrossRefGoogle Scholar
  2. Arendt, J., Forbes, J. M., Brown, W. B., and Marston, A., 1980, Effect of pinealectomy on immunnoassayable melatonin in sheep, J. Endocrinol. 85:1P–2P.Google Scholar
  3. Ariens Kappers, J., 1960, The development, topographical relations and innervation of the epiphysis cerebri in the albino rat, Z. Zellforsch. Mikrosk. Anat. 52:163–215.Google Scholar
  4. Ariens Kappers, J., 1979, Short history of pineal discovery and research, in: The Pineal Gland of Vertebrates Including Man–Progress in Brain Research, vol. 52, J. Ariens Kappers, and P. Pevet, eds., Elsevier North-Holland Biomedical Press, Amsterdam, pp. 3–22.CrossRefGoogle Scholar
  5. Ariens Kappers, J., Smith, A. R., and DeVries, R. A. C., 1979, The mammalian pineal gland and its control of hypothalamic activity, in: The Pineal Gland of Vertebrates Including Man–Progress in Brain Research, vol. 52, J. Ariens Kappers, and P. Pevet, eds., Elsevier North-Holland Biomedical Press, Amsterdam, pp. 149–174.Google Scholar
  6. Backstrom, M., and Wetterberg, L., 1972, Catechol-0-methyl-transferase, histamine-N-methyltransferase and methanol forming enzyme in the rat pineal gland, Life Sci. 11: 293–299.Google Scholar
  7. Carr, D. R., Reppert, S. M., Bullen, B., Skrinar, G., Beitins, I., Arnold M., Rosenblatt, M., Martin, J. B., and McArthur, J. W., 1981, Plasma melatonin increases during exercise in women, J. Clin. Endocrinol. Metab. 53:224–225.Google Scholar
  8. David, G. F. X., and Herbert, J., 1973, Experimental evidence for a synaptic connection between habenula and pineal ganglion in the ferret, Brain Res. 64: 327–343.Google Scholar
  9. Eranko 0, Rechardt, L., Eranko, L., and Cunningham, A., 1970, Acetylcholinesterase (AChE) activity in the sympathetic nerve fibres of the pineal body (PB) of the rat, Scand. J. Clin. Lab. Invest. 25 (Suppl. 113): 82.Google Scholar
  10. Eranko, 0., Rechardt, L., Eranko, L., and Cunningham, A., 1970, Light and electron microscopic histochemical observations on cholinesterase-containing sympathetic nerve fibers in the pineal body of the rat, Histochem. J. 2:479–489.Google Scholar
  11. Fellenberg, A. J., Phillipou, G., and Seamark, R. F., 1980, Specific quantitation of urinary 6-hydroxymelatonin sulphate by gas chromatography mass spectrometry, Biomed. Mass. Spec. 7:84–87.Google Scholar
  12. Hanssen, T., Heyden, T., Sundberg, T., and Wetterberg, L., 1977, Effect of propanolol on serum-melatonin, Lancet 2: 309–310.CrossRefGoogle Scholar
  13. Jimerson, D. C., Lynch, H. J., Post, R. M., Wurtman, R. J., and Bunney, W. E., 1977, Urinary melatonin rhythms during sleep deprivation in depressed patients and normals, Life Sci. 20:1501–1508.Google Scholar
  14. Klein, D. C., and Parfitt, A., 1976, A protective role of nerve endings in stress-stimulated increase in pineal N-acetyl-transferase activity, in: Catecholamines and Stress, E. Usdin, R. Kvetnanasky, and I. J. Kopin, eds., Pergamon Press, New York, pp. 119–128.Google Scholar
  15. Kneisley, L. W., Moskowitz, M. H., and Lynch, H. J., 1978, Cervical spinal cord lesions disrupt the rhythm in human melatonin excretion, J. Neurol. Transm., Suppl. 13:311–323.Google Scholar
  16. Lewy, A. J., and Markey, S. P., 1978, Analysis of melatonin in human plasma by gas chromatography negative chemical ionization mass spectrometry, Science 201: 741–743.Google Scholar
  17. Lewy, A. J., Tetsuo, M., Markey, S. P., Goodwin, F. K., and Kopin, I. J., 1980, Pinealectomy abolishes plasma melatonin in the rat, J. Clin. Endocrinol. Metab. 50:204–205.Google Scholar
  18. Lewy, A. J., and Neuwelt, E. A., Disappearance of plasma melatonin after surgical removal of a neoplastic pineal gland, in preparation.aGoogle Scholar
  19. Lewy, A. J., Siever, L., Uhde, T. W., Murphy, D. L., Post, R. A., Markey, S. P., and Goodwin, F. K., Clonidine reduces human melatonin secretion, in preparation.bGoogle Scholar
  20. Lewy, A. J., Wehr, T. A., Gold, P. W., and Goodwin, F. K., Melatonin secretion in manic-depressive patients, in preparation.cGoogle Scholar
  21. Machado, A. B. M., and Lemos, V. P. J., 1971, Histochemical evidence for a cholinergic sympathetic innervation of the rat pineal body, J. Neurovisc. Relat. 32:104–111.Google Scholar
  22. Manocha, S. L., 1970, Histochemical distribution of acetylcholinesterase and simple esterases in the brain of squirrel monkey (Saimiri sciureus), Histochemie. 21: 236–248.PubMedGoogle Scholar
  23. Markey, S. P., and Buyell, P. E., 1982, Pinealectomy abolishes 6-hydroxymelatonin excretion by male rats, Endocrinology 111:425–426.Google Scholar
  24. Mikuni, M., Saito, Y., Koyama, T., Yamashita, i., 1981, Circadian variation of cyclic AMP in the rat pineal gland. J. Neurochem. 36: 1295–1297.PubMedCrossRefGoogle Scholar
  25. Moller, M., 1978, Presence of a pineal nerve (nervus pinealis) in the human fetus; a light and electron microscopical study of the innervation of the pineal gland, Brain Res. 154: 1–12.Google Scholar
  26. Nielsen, J. T., and Moller, M., 1975, Nervous connections between the brain and the pineal gland in the cat (Felis catus) and the monkey (Cercopithecus aethiops), Cell. Tiss. Res. 161:293–301.Google Scholar
  27. Nijjar, M.S., Smith, T. L., and Hauser, G., 1980, Evidence against dopaminergic and further support for beta-adrenergic receptor involvement in the pineal phosphatidylinositol effect, J. Neurochem. 34:813–821.Google Scholar
  28. Parfitt, A., and Klein, D. C., 1977, Increase caused by desmethylimipramine in the production of (3H) melatonin by isolated pineal glands, Biochem. Pharmacol. 26:904–905.Google Scholar
  29. Pelayo, F., Dubocovich, M. L., Langer, S. Z., 1977, Regulation of noradrenaline release in the rat pineal through a negative feedback mechanism mediated by presynaptic alphaadrenoceptors, Eur. J. Pharmacol. 45:317–318.Google Scholar
  30. Pelham, R. W., 1975, A serum melatonin rhythm in chickens and its abolition by pinealectomy, Endocrinology 96: 543–546.Google Scholar
  31. Pelham, R. W., Ralph, C. L., and Campbell, I. M., 1972, Mass spectral identification of melatonin in blood, Biochem. Biophys. Res. Commun. 46:1236–1241.Google Scholar
  32. Rollag, M.D., 1981, Methods for measuring pineal hormones, in: The Pineal Gland, Anatomy and Biochemistry, vol. 1, R. J.Google Scholar
  33. Reiter, ed., CRC Press, Boca Raton, Fla., pp. 273–302.Google Scholar
  34. Romijn, H. J., 1973, Parasympathetic innervation of the rabbit pineal gland, Brain Res. 55: 431–436.Google Scholar
  35. unit recordings in the rat pineal gland: evidence for habenulo-pineal neural connections, Exp. Brain Res. 39:187–192.Google Scholar
  36. Schrier, B. K., and Klein, D. C., 1974, Absence of choline acetyltransferase in rat and rabbit pineal gland, Brain Res. 79:347–351.Google Scholar
  37. Siever, L. J., Cohen, R. M., and Murphy, D. L., 1981, Antidepressants and alpha-adrenergic autoreceptor desensitization. Am. J. Psychiatry 138:681–682.Google Scholar
  38. Snyder, A. H., Axelrod, J., Wurtman, R. J., and Fischer, J. E., 1965, Control of 5-hydroxytryptophan decarboxylase activity in the rat pineal gland by sympathetic nerves, J. Pharmacol Exp. Ther. 147:371–375.Google Scholar
  39. Tetsuo, M., Markey, S. P., Kopin, I. J., 1980, Measurement of 6-hydroxymelatonin in human urine with its diurnal variation, Life Sci. 27: 105–109.Google Scholar
  40. Tetsuo, M., Perlow, M. J., Mishkin, M., and Markey, S. P., 1982, Light exposure reduces and pinealectomy virtually stops urinary excretion of 6-hydroxymelatonin by Rhesus monkeys, Endocrinology 110: 997–1003.Google Scholar
  41. Tetsuo, M., Polinsky, R. J., Markey, S. P., and Kopin, I. J., 1981, Urinary 6-hydroxymelatonin excretion in patients with orthostatic hypotension, J. Clin. Endocrinol. Metab. 53:607–610.Google Scholar
  42. Trueman, T., and Herbert, J., 1970, The distribution of monoamines and acetylcholinesterase in the pineal gland and habenula of the ferret, J. Anat. 106:406.Google Scholar
  43. Vaughan, G. M., McDonald, S. D., Bell, R., and Stevens, E. A., 1979, Melatonin, pituitary function and stress in humans, Psychoneuroendocrinology 4: 351–362.Google Scholar
  44. Vaughan, G. M., Pelham, R. W., Pang, S. F., Loughlin, L. L., Wilson, K. M., Sandock, K. L., Vaughan, M. K., Koslow, S. H., and Reiter, F. J., 1976, Nocturnal elevation of plasma melatonin and urinary 5-hydroxy-indoleacetic acid: attempts at modification by brief changes in environmental lighting and sleep and by autonomic drugs, J. Clin. Endocrinol. Metab. 42:752–754.Google Scholar
  45. Wartman, S. A., Branch, B. J., George, R., and Taylor, A. N., 1969, Evidence for a cholinergic influence on pineal hydroxyindole-0-methyltransferase activity with changes in environmental lighting, Life Sci. 8: 1263–1270.Google Scholar
  46. Wetterberg, L., Beck-Friis, J., Aperia, B., and Pettersen, U., 1979, Melatonin/cortisol ratio in depression, Lancet 2: 1361.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Alfred J. Lewy
    • 1
  1. 1.Departments of Psychiatry, Pharmacology and Ophthalmology Oregon Health SciencesUniversity PortlandUSA

Personalised recommendations