Neurobiological Investigations of the Pineal Gland and Its Hormone Melatonin

Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 65)


Since very recently an extensive review of the results of electrophysiological experiments in the pineal gland of rodents and birds has been published(Semm, 1981), in this article I will focus on four important neurobiological aspects of the pineal in guinea-pigs, rats and homing pigeons: 1. circadian rhythmicity, as shown by long-term recordings and the use of microelectrophoresis, 2. electrophysiological and morphological studies on the central innervation of the gland 3. the transmitter-like activity of melatonin and its precursors in the pineal and other brain areas and 4. as a major point investigations of the magnetic sensitivity of the pineal, including single unit recordings, biochemical measurements of melatonin synthesis during and following earth-strength magnetic stimulation and the metabolic mapping of brain areas, which are sensitive for magnetic stimuli in the range of the natural field.The latter results may be of special interest for pineal researchers as most of the brain areas exhibiting magnetic sensitivity, as shown by the (14C)2-deoxyglucose-method, also contain or synthesize N-acetylalkylamines or melatonin respectively.


Purkinje Cell Pineal Gland Pineal Organ Melatonin Synthesis Homing Pigeon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, K., and Taylor, D. H., 1980, Melatonin and thyroxine: influence on compass orientation in salamanders, J. comp. Physiol. 136: 235CrossRefGoogle Scholar
  2. Beck, W., 1982, pers. communicationGoogle Scholar
  3. Beischer, D. E., 1971, The null magnetic field as a reference for the study of geomagnetic directional effects in animals and man. Ann. New York Acad. Sci. 188: 324CrossRefGoogle Scholar
  4. Beischer, D. E., Knepton, J. C., and Kembro, D. V., 1967, Letter Rept., NASA order No. R-39, U. S. Naval Aerospace Medical institute, Pensacola, Fla. (cited in Busby, D. E., 1968, see ibid. )Google Scholar
  5. Benson, B., 1977, Current status of pineal peptides. Neuroendocrin. 24: 241CrossRefGoogle Scholar
  6. Brown, G., Grota, L., Bubenik, G., Niles, L., and Tsui, H., 1981, Physiologic regulation of melatonin, Adv. in Biosci., 29:95.Google Scholar
  7. Brown, F. A., Jr., and Scow, K. M., 1978, Magnetic induction of a circadian cycle in hamsters, J. interdiscipl. Cycle Res., 9: 137CrossRefGoogle Scholar
  8. Bliss, V. L., and Heppner, F. H., 1976, Circadian activity rhythm influenced by near zero magnetic field, Nature 261: 411.PubMedCrossRefGoogle Scholar
  9. Busby, D. E., 1968, Space biomagnetics, Space Life Sci., 1: 23.PubMedGoogle Scholar
  10. Cremer-Bartels, G., and Krause, K. (pers. communication).Google Scholar
  11. Deguchi, T., 1981, Rhodopsin-like photosensitivity of isolated chicken pineal gland. Nature, 290: 702.CrossRefGoogle Scholar
  12. Gerisch, W., and Becker, G., 1979, Geomagnetobiologisch bedingter Zusammenhang zwischen der Fraßaktivität von Termiten and der Zahl der Sterbefälle. Bundesanstalt für Materialprüfung(Berlin), Forschungsbericht 62: 1.Google Scholar
  13. Graf, M., Christen, H., Tobler, H. J., Baumann, J. B., and Schoenenberger, G. A., 1981, DSIP a circadian’programming’ substance?, Experientia 37: 624Google Scholar
  14. Graf, M., Lorez, H. P., Gillesen, D., Tobler, H. J., and Schoenenberger, G. A., 1981, Distribution and specific binding of 3H-DSIP., Experientia 37: 625.Google Scholar
  15. Herbute, J., and Bayle, J. D., 1977, Suppression of pineal multiunit response to flash after habenular lesion in quail, Am. J. Physiol., 231: 136Google Scholar
  16. Illnerova, H., Vanecek, J., Krecek, J., and Wetterberg, L., 1979, Effect of one minute light exposure to light at night on rat pineal serotonin N-acetyltransferase and melatonin, J. Neurochem., 32: 673PubMedCrossRefGoogle Scholar
  17. Keeton, W. T., Timothy, S. L., and Windsor, D. M., 1974, Normal fluctuations in the earth’s magnetic field influence pigeon orientation, J. comp. Physiol., 95: 95.CrossRefGoogle Scholar
  18. Korf, H. -W., and Wagner, V., 1980, Evidence for a nervous connection between the brain and the pineal organ in the guinea-pig, Cell. Tiss. Res., 209: 505Google Scholar
  19. Leask, M. J. M., 1977, A physikochemical mechanism for magnetic field detection by migratory birds and homing pigeons, Nature, 267: 144.PubMedCrossRefGoogle Scholar
  20. Lövsund, P., Nilsson, S. E. G., and Öberg, P. A., 1981, Influence on frog retina of alternating magnetic fields with special reference to ganglion cell activity, Med. Comput., 19: 679.CrossRefGoogle Scholar
  21. Mai, J. K., and Semm, P., 1982, Anatomy of magnetic communication syste:Metabolic mapping of magnetically sensitive areas of the pigeon’s brain by means of the autoradiographic (14C)deoxyglucose technique (submitted).Google Scholar
  22. Malin, S. R. C., and Srivastava, B. J., 1979, Correlation between heart attacks and magnetic activity. Nature, 277: 646.PubMedCrossRefGoogle Scholar
  23. McClung, R., and Dafny, N., 1975, Neurophysiological properties of the pineal body. II. Single unit recording, Life Sci., 16: 621.PubMedGoogle Scholar
  24. Mok, A. C. S., and Mogenson, G. J., 1974, Effects of electrical stimulation of the lateral hypothalamus, hippocampus, amygdala and olfactory bulb on unit activity of the lateral habenular nucleus of the rat, Brain Res., 77: 417.PubMedCrossRefGoogle Scholar
  25. Ossenkopp, K. -P., Koltek, W. T., and Persinger, M. A., 1972, Prenatal exposure to an extremely low frequency-low intensity rotating magnetic field and increase in thyroid and testicle weight in rats, Develop Psychobiol., 5: 275CrossRefGoogle Scholar
  26. Ossenkopp, K. -P., and Nobrega, J. N., 1978, Significant relationship between perinatal geomagnetic field activity and anxiety levels in females, Arch. Met. Geoph. Biokl. Ser. B., 27: 75.CrossRefGoogle Scholar
  27. Pang, S. F., and Yew, D. T., 1979, Pigment aggregation by melatonin in the retinal pigment epithelium and choroid of guinea-pigs, Experientia, 35: 231PubMedCrossRefGoogle Scholar
  28. Pazo, J. H., 1979, Effects of melatonin on spontaneous and evoked neuronal activity in the mesencephalic reticular formation, Brain Res. Bull., 4: 725PubMedCrossRefGoogle Scholar
  29. Quay, W. B., 1974, Pineal chemistry, Springfield, III.: Charles C. Thomas.Google Scholar
  30. Reuss, S., and Semm, P., 1982, Electrophysiological investigations on the sympathetic and central innervation of the mammalian pineal gland, Abstracts of the 75th Symposium of the German Zoological Society, Hannover, p. 99.Google Scholar
  31. Sakharova, S. A., 1977, Reactions of the central and peripheral mediator links of the sympatho-adrenal system to a single exposure to an alternating magnetic field, Biol. Nauki, 9: 35.PubMedGoogle Scholar
  32. Schneider, T., Semm, P., and Vollrath, L., 1981, Ultrastructural observations on the central innervation of the guinea-pig pineal gland, Cell Tiss. Res., 220: 41Google Scholar
  33. Schoenenberger, G. A., Maier, P. F., Tobler, H. J., Wilson, K., and Monnier, M., 1978, The delta EEG(Sleep)-inducing peptide(DSIP)XI. Amino-acid analysis, Sequence, Synthesis and Activity of the Nonapeptide, Pflügers Arch., 376.: 119.PubMedCrossRefGoogle Scholar
  34. Semm, P., 1978, Electrophysiological and morphological aspects of the guinea-pig epiphysis cerebri, J. neural Transm., 13: 394.Google Scholar
  35. Semm, P., 1981, Electrophysiological aspects of the mammalian pineal gland, in:The pineal organ:photobiologybiochronometry-endocrinology, Oksche, A., and Pevét, P., eds., pp. 81–96, Elsevier/North HollandGoogle Scholar
  36. Semm, P., 1982, Electrophysiology of the mammalian pineal gland:evidence for rhythmical and non rhythmical elements and for magnetic influence on electrical activity, in:Structure and Function of the vertebrate circadian system, Aschoff, J., ed., Berlin-Heidelberg-New York:Springer(in press).Google Scholar
  37. Semm, P., and Reuss, S., 1982, Interactions of melatonin and delta sleep-inducing peptide(DSIP) in the pineal gland and cerebellum (in preparation).Google Scholar
  38. Semm, P., and Vollrath, L., 1979, Electrophysiology of the guinea-pig pineal organ:sympathetic influence and different reactions to light and darkness, Prog. Brain Res., 52: 107.PubMedCrossRefGoogle Scholar
  39. Semm, P., and Vollrath, L., 1980, Electrophysiological evidence for circadian rhythmicity in a mammalian pineal organ, J. neural Transm., 47: 181.PubMedCrossRefGoogle Scholar
  40. Semm, P., and Vollrath, L., 1982a, Alterations in the spontaneous activity of cells in the guinea-pig pineal gland and visual system produced by pineal indoles, J. neural Transm. 53(in press).Google Scholar
  41. Semm, P. and Vollrath, L., Electrical responses of homing pigeon and guinea-pig Purkinje cells to pineal indoles applied by microelectrophoresis, Exp. Brain Res. (submitted)Google Scholar
  42. Semm, P., and Vollrath, L., 1982c, Spontaneous electrical activity in the pineal gland of the pigeon (in preparation).Google Scholar
  43. Semm, P., Demaine, C., and Vollrath, L., 1981b, Electrical responses of pineal cells to melatonin and putative transmitters:evidence for circadian changes in sensitivity, Exp. Brain Res., 43: 361.PubMedGoogle Scholar
  44. Semm, P., Demaine, C., and Vollrath, L., 1981c, Electrical responses to thyroid hormones and parathormone. A microelectrophoretic study, Neuroendocrin., 33: 212CrossRefGoogle Scholar
  45. Semm, P., Demaine, C., and Vollrath, L., 1981d, The effects of sex hormones, prolactin and chorionic gonadotropin on pineal cell electrical activity in guinea-pigs, Cell. mol. Neurobiol., 1: 259.PubMedCrossRefGoogle Scholar
  46. Semm, P., Schneider, T., and Vollrath, L., 1980, The effects of an Earth-strength magnetic field on the electrical activity of pineal cells, Nature, 288: 607.PubMedCrossRefGoogle Scholar
  47. Semm, P., Schneider, T., and Vollrath, L., 1981a, Morphological and electrophysiological evidence for habenular influence on the guinea-pig pineal gland, J. neural Transm., 50: 247.PubMedCrossRefGoogle Scholar
  48. Semm, P., Schneider, T., Vollrath, L., and Wiltschko, W., 1982, Magnetic sensitive pineal cells in pigeons, Proc. in Life Sci:Avian Navigation, Papi, F. and Wallraff, H., eds., pp. 329–337, Springer Verlag.Google Scholar
  49. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Petitgrew, K. D., Sakurada, 0., and Shinohara, M., 1977, The (14C)deoxyglucose method for the measurement of local cerebral glucose utilization:theory, procedure, and normal values in the conscious and anesthetized albino rat, J. Neurochem., 28: 897.PubMedCrossRefGoogle Scholar
  50. Streit, P:, Burkhalter, M., Stella, M., and Cuenod, M., 1980, Patterns of activity in pigeon brain’s visúal relays as revealed by the (14C)2-deoxyglucose method, Neurosci., 5: 1053.CrossRefGoogle Scholar
  51. Ueck, M., 1979, Innervation of the vertebrate pineal, Prog. Brain Res., 52: 45.PubMedCrossRefGoogle Scholar
  52. Vollrath, L., 1981, The pineal organ, in:Handbuch der mikroskopischen Anatomie des Menschen, Oksche, A., and Vollrath, L., eds., Vol. 6, part 7, Berlin-Heidelberg-New York: Springer Verlag.Google Scholar
  53. Walcott, C., 1977, Magnetic fields and the orientation of homing pigeons under sun, J. exp. Biol., 70: 105.Google Scholar
  54. Welker, H. A., Semm, P., and Vollrath, 1982a, Effects of an artificial magnetic field on the secretory activity of the rat pineal gland, Symposium of the German Endocrinological Society, Salzburg, Abstract 139, p122Google Scholar
  55. Welker, H. A., Semm, P., Willig, R. P., Wiltschko, W., and Vollrath, L., 1982b, Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland (in preparation).Google Scholar
  56. Wiltschko, W., 1980, The earth’s magnetic field and bird orientation, Trends in Neurosci., 3: 140.CrossRefGoogle Scholar
  57. Wiltschko, W., and Wiltschko, R., 1981, Disorientation of inexperienced young pigeons after transportation in total darkness, Nature, 291: 433.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • P. Semm
    • 1
  1. 1.Dept. of ZoologyJ.W.Goethe UniversityFrankfurtGermany

Personalised recommendations