The 5-Methoxyindoles Different from Melatonin: Their Effects on the Sexual Axis

  • Paul Pévet
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 65)


From the time of Lerner’s discovery of melatonin (Lerner et al., 1958) to the present, much pineal research has been centered on the study of the effects of melatonin, and to date this 5-methoxyindole is considered by many authors as the pineal hormone responsible for inhibiting the reproductive system (details and references in Reiter, 1980) or the pineal factor conveying the photoperiodic message (see details and references in Hoffmann, 1981.


Pineal Gland Golden Hamster Pineal Organ Harderian Gland Ovarian Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, B., 1969, The synthesis and effects of pineal gland 5-methoxyindoles in relation to sexual maturation in the Japanese quail, Coturnix coturnix, japonica. Ph.D. Thesis, Northwestern University, Evanston, III., U.S.A.Google Scholar
  2. Axelrod, J., and Lauber, J.K., 1968, Hydroxyindole-O-methyltransferase in several avian species, Biochem. Pharmacol. 17: 828.PubMedCrossRefGoogle Scholar
  3. Axelrod, J., and Weissbach, H., 1960, Enzymatic 0-methylation of N-acetylserotonin to melatonin, Science 131: 1312.Google Scholar
  4. Axelrod, J., and Weissbach, H., 1961, Purification and properties of hydroxyindole-O-methyltransferase activity in the rat pineal gland by environmental lighting, J. Biol. Chem. 236:211.Google Scholar
  5. Balemans, M.G.M., 1972, Age-dependent effects of 5-methoxytryptophol and melatonin on testes and comb growth of the white leghorn (Gallus domesticus, L.), J. Neural Transm. 33: 179.PubMedCrossRefGoogle Scholar
  6. Balemans, M.G.M., Bary, F.A.M., Legerstee, W.C., and Van Benthem, J., 1980a, Seasonal variations in HIOMT activity during the night in the pineal gland of 21-day old male Wistar rats, J. Neural Transm. 49:107.Google Scholar
  7. Balemans, M.G.M., Collin, J.P., Legerstee, W.C., and Juillard, M.T., 1981, Preliminary investigations on the circadian rhythmicity of the methylation of 5hydroxyindoles in the pineal gland of the parakeet, Biol. Cell. 42:167.Google Scholar
  8. Balemans, M.G.M., Noordegraaf, E.M., Bary, F.A.M. and VanGoogle Scholar
  9. Berlo, M.F., 1978, Estimation of the methylating capacity of the pineal gland. With special reference to indole metabolism, Experientia 34: 887.Google Scholar
  10. Balemans, M.G.M., Pévet, P., Legerstee, W.C., and Nevo, E., 1980b, Melatonin and 5-methoxytryptophol synthesis in the pineal, the retina and the Harderian gland of the mole-rat (Spalax ehrenbergi,Nehring) and in the pineal of the mouse “eyeless”, J. Neural Transm. 49:225.Google Scholar
  11. Balemans„ M.G.M., Pévet, P., Van Benthem, J., HaldarMisra, C., Smith, I., and Hendriks, H., 1982, Seasonal rhythmicity in the capacity of HIOMT to synthesize different 5-methoxyindoles in the pineal, the retina and the Harderian gland of the golden hamster (Mesocricetus auratus) (submitted).Google Scholar
  12. Balemans, M.G.M., Van der Veerdonk, F.C.G., and Van de Kamer, J.C., 1977a, Effect of injecting 5-methoxyindoles on testicular weight of white leghorn cockerels, J. Neural Transm. 41:47.Google Scholar
  13. Balemans, M.G.M., Van der Veerdonk, F.C.G., and Van de Kamer, J.C., 1977b, The influence of 5-methoxytryptophol, a pineal compound, on comb growth, ovarian weight, follicular growth and egg production of juvenile and maturing adult white leghorn hens. J. Neural Transm. 41: 37.PubMedCrossRefGoogle Scholar
  14. Beck, O., and Jonsson, G., 1981, In vivo formation of 5methoxytryptamine from melatonin in rat, J. Neurochem., 36: 2013.Google Scholar
  15. Beck, O., Jonsson, G., and Lundman, A., 1981, 5-Methoxyindoles in pineal gland of cow, pig, sheep and rat. Arch. Pharmacol. 318:49.Google Scholar
  16. Bosin, T.R., and Beck, 0., 1979, 5-Methoxytryptamine in the human pineal gland: identification and quantification by mass fragmentography, J. Neurochem. 32: 1853.Google Scholar
  17. Bosin, T.R., Jonsson, G., and Beck, 0., 1979, On the occurrence of 5-methoxytryptamine in brain, Brain Res. 173:79.Google Scholar
  18. Bradley, P.B., and Briggs, L., 1974, Further studies on the mode of action of psychomimetic drugs: antagonism of the excitatory actions of 5-hydroxytryptamine by methylated derivatives of tryptamine, Brit. J. Pharmacol. 50:345.Google Scholar
  19. Cardinali, D.P., and Wurtman, R.J., 1972, Hydroxyindole0-methyltransferase in rat pineal, retina and Harderian gland, Endocrinology 91: 247.Google Scholar
  20. Carter, S.J., Laud, C.A., Smith, I., Leone, R.M., Silman, R.E., Hooper, R.J.L., Larson-Carter, D.L., Finnie, M.D.A., and Mullen, P.E., 1979, 5-Methoxytryptophol in rat pineal glands and other tissues, in: “The Pineal Gland of Vertebrates including Man”, J.Ariëns Kappers and P.Pévet, eds., Prog. Brain Res., 52, Elsevier, Amsterdam.Google Scholar
  21. Cattabeni, F., Koslow, S.H., and Costa, E., 1972, Gas chromatographic-mass spectrometric assay of four indole alkylamines of rat pineal. Science 178: 166.Google Scholar
  22. Debeljuk, L., Feder, V.M., and Paulucci, D.A., 1970, Effect of treatment with melatonin on the pituitary-testicular axis of the male rat, J. Reprod. Fertil. 21:363.Google Scholar
  23. Delvigs, P., Mclsaac, W.M., and Taborsky, R.G., 1965, The metabolism of 5-methoxytryptophol, J. biol. Chem. 240:348.Google Scholar
  24. De Montigny, C., and Aghajanian, G.K., 1977, Preferential action of 5-methoxytryptamine and 5-methoxydimethyltryptamine on presynaptic serotonin receptors; a comparative iontophoretic study with LSD and serotonin, Neuropharmacology 15: 811.Google Scholar
  25. Farrel, G., Powers, D., and Otani, T., 1968, Inhibition of ovulation in the rabbit: seasonal variation and the effects of indoles, Endocrinology 83: 599.Google Scholar
  26. Fiske, V.M., and Huppert, L.C., 1968, Melatonin action on pineal varies with photoperiod, Science 162: 279.Google Scholar
  27. Franzen, F., and Gross, H., 1965, Tryptamine, N,N-Dimethyltryptamine, N,N-Dimethyl-5-hydroxytryptamine and 5-methoxytryptamine in human blood and urine, Nature 206: 1052.Google Scholar
  28. Fraschini, F. 1969, The pineal gland and the control of LH and FSH secretion, in: “Progress in Endocrinology”, C.Gual, ed., Excerpta Medica, Amsterdam.Google Scholar
  29. Fraschini, F., and Martini, L., 1970, Rhythmic phenomena and pineal principles, in: “The Hypothalamus”, L. Martini and F.Fraschini, eds., Academic Press, New York, London.Google Scholar
  30. Fraschini, F., Collu, R., and Martini, L., 1971, Mechanisms of inhibitory action of pineal principles on gonadotropin secretion, in: “The Pineal Gland”, G.E. W. Wolstenholm and J.Knight, eds., Churchill, New York.Google Scholar
  31. Guchhait, R.B., 1976, Biogenesis of 5-methoxy-N,N-dimeth-yltryptamine in human pineal gland, J. Neurochem. 26:187.Google Scholar
  32. Haddox, C.H., and Saslaw, M.S., 1963, Urinary 5-methoxytryptamine in patients with rheumatic fever, J. clin. Invest. 42:435.Google Scholar
  33. Herbert, J., 1971, The role of the pineal gland in the control by light of the reproductive cycle of the ferret, in: “The Pineal Gland”, G.E.W.Wolstenholm and J.Knight, eds., Churchill Livingston, Edinburgh, U.K.Google Scholar
  34. Hoagland, R.E., and Graf, G., 1971, Nitroacetanilides as chromogenic substrate for assaying de-acetylating activity: The isolation and partial purification of aryl acylamidases from erepsin and tulip, Enzymologia 41: 313.Google Scholar
  35. Hoffmann, K., 1974, Testicular involution in short photo-periods inhibited by melatonìn, Naturwissensch.61: 364.Google Scholar
  36. Hoffmann, K., 1981, Photoperiodic function of the mammalian pineal organ, in: “The Pineal Organ, Photo-biology - Biochronometry - Endocrinology”, A.Oksche and P.Pévet, eds., Elsevier/North-Holland, Amsterdam.Google Scholar
  37. Holmstedt, B., and Lindgren, J.E., 1967, Chemical constituents and pharmacology of south american snuffs, in: “Ethnopharmacologic Search for Psychiatric Drugs”, D.H.Efron, ed., U.S.Public Health Service, Washington.Google Scholar
  38. Hooper, R.J.L., Silman, R.E., Leone, R.M., and Young, I. M., 1981, The development of a plasma assay for 5-methoxytryptamine using gas chromatography-mass spectrometry, in: “Pineal Function”, C.D.Matthews and R.F.Seamark, eds., Elsevier/North-Holland.Google Scholar
  39. Hoskins, J.A., and Pollit, R.J., 1978, The determination of 5-methoxyindole-3-acetic acid in human urine by mass fragmentography, J. Chromatography 145:285.Google Scholar
  40. Jequier, E., Robinson, D.S., Lovenberg, W., and Sjoerdsma, A., 1969, Further studies on tryptophan hydroxylase in rat brainstem and beef pineal. Biochem. Pharmacol. 18:1071.Google Scholar
  41. Klein, D.C., 1979, Circadian rhythms in the pineal gland, in: “Endocrine Rhythms”, D.T.Krieger, ed., Raven Press, New York.Google Scholar
  42. Kopin, I.J., Pare, C.M.B., Axelrod, J., and Weissbach, H., 1961, The fate of melatonin in animals, J. Biol. Chem. 236:3072.Google Scholar
  43. Krebs, H.A., Sykes, W.O., and Bartley, W.C., 1947, Acetylation and deacetylation of the p-amino group of sulphonamide drugs in animal tissues, Biochem. J. 41:622.Google Scholar
  44. Kveder, S., and Mclsaac, W.M., 1961, The metabolism of melatonin (N-acetyl-5-methoxytryptamine) and 5-methoxytryptamine, J. Biol. Chem. 236:3214.Google Scholar
  45. Lerner, A.B., and Case, J.D., 1960, Melatonin, Fed. Proc., 19: 590.Google Scholar
  46. Lerner, A.B., Case, J.D., Takahashi, Y., Lee, T.H., and Mori, W., 1958, Isolation of melatonin, the pineal gland factor that lightens melanocytes, J. Amer. chem. Soc. 80:2587.Google Scholar
  47. Lerner, A.B., Case, J.D., and Takahashi, Y., 1960, Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands, J. Biol. Chem. 235:1992.Google Scholar
  48. Lerner, A.B., Case, J.D., Biermann, K., Anthony, R.V., and Krivis, A., 1959, Isolation of 5-methoxyindole-3acetic acid from bovine pineal glands, J. Amer. chem. Soc. 81:5264.Google Scholar
  49. Lovenberg, W., Weissbach, H., and Udenfriend, A., 1962, Aromatic 1-amino acid decarboxylase, J. Biol. Chem. 237:89.Google Scholar
  50. Lovenberg, A., Jequier, E., and Sjoerdsma, A., 1967, Tryptophan hydroxylation. Measurement in pineal gland, brainstem and carcinoid tumor, Science 155: 217.Google Scholar
  51. Maickel, R.P., and Miller, F.P., 1968, The fluorometric determination of indolealkylamines in brain and pineal gland, Adv. Pharmacol. 6a:71.Google Scholar
  52. Martin, J.M., Engel, J.N., and Klein, D.C., 1977, Inhibition of the in vitro pituitary response to luteinizing hormone-releasing hormone by melatonin, serotonin and 5-methoxytryptamine, Endocrinology 100: 675.Google Scholar
  53. Mas, M., and Oaknin, S., 1977, Effects of pineal methoxyindoles on male sex behaviour and spermatogenesis, Pineal Gland Symposium, Abstract 18, Israel.Google Scholar
  54. Mclssac, W.M., and Page, I., 1959, The metabolism of serotonin (5-hydroxytryptamine), J. biol. Chem. 234:858.Google Scholar
  55. Mclssac, W.M., Farrell, G., Taborsky, R.G., and Taylor, A.N., 1965, Indole compounds: isolation from pineal tissue, Science 148: 102.Google Scholar
  56. Mclsaac, W.M., Taborsky, R.J., and Farrell, G., 1964, 5Methoxytryptophol: effect on estrus and ovarian weight, Science 145: 63.Google Scholar
  57. Miller, F.P., and Maickel, R.P., 1970, Fluorometric determination of indole derivatives, Life Sci. 9: 747.Google Scholar
  58. Nimmo-Smith, R.H., 1970, Aromatic N-deacetylation by chick-kidney mitochondria, Biochem. J. 75:284.Google Scholar
  59. Pévet, P., and Haldar-Mìsra, C., 1982a, Effect of 5-methoxytryptamine on the testicular atrophy induced by experimental or natural short photoperiods in the golden hamster, J. Neural Transm. in press.Google Scholar
  60. Pévet, P., and Haldar-Misra, C., 1982b, Daily 5-methoxytryptamine injections inhibit short-day induced testicular atrophy in golden hamsters, J. Neural Transm. in press.Google Scholar
  61. Pévet, P., and Haldar-Misra, C., 1982c, Morning injections of large doses of melatonin, but not of 5-methoxytryptamine, prevent in the hamster the antigonadotropic effect of 5-methoxytryptamine administered late in the afternoon, J. Neural Transm. in press.Google Scholar
  62. Pévet, P., Balemans, M.G.M., Bary, F.A.M., and Noordegraaf, E.M., 1978, The pineal gland of the mole (Talpa europaea, L.). V. Activity of hydroxy-indole-Omethyltransferase (HIOMT) in the formation of melatonin/5-hydroxytryptophol in the eyes and the pineal gland, Ann. Biol. anim. Biochem. Biophys. 18: 259.CrossRefGoogle Scholar
  63. Pévet, P., Balemans, M.G.M., Legerstee, W.C., and VivienRoels,B., 1980, Circadian rhythmicity of the activity of hydroxyindole-O-methyltransferase (HIOMT) in the formation of melatonin and 5-methoxytryptophol in the pineal, retina and Harderian gland of the golden hamster, J. Neural Transm. 19:229.Google Scholar
  64. Pévet, P., Balemans, M.G.M., and De Reuver, G.F., 1981a, The pineal gland of the mole (Talpa europaea,L.). VII. Activity of hydroxyindole-0-methyltransferase (HIOMT) in the formation of 5-methoxytryptophan, 5-methoxytryptamine, 5-methoxyindole-3-acetic acid, 5-methoxytryptophol and melatonin in the eyes and the pineal, J. Neural Transm. 51:271.Google Scholar
  65. Pévet, P., Haldar-Misra, C., and Ocal, T., 1981b, Effect of 5-methoxytryptophan and 5-methoxytryptamine on the reproductive system of the male golden hamster, J. Neural Transm. 51: 303.PubMedCrossRefGoogle Scholar
  66. Pévet, P., Haldar-Misra, C., and Ocal, T., 1981c, The independency of an intact pineal gland of the inhibition by 5-methoxytryptamine of the reproductive organ in the male hamster, J. Neural Transm. 52:95.Google Scholar
  67. Prozialeck, W.C., Boehme, D.H., and Vogel, W.H., 1978, The fluorometric determination of 5-methoxytryptamine in mammalian tissues and fluids, J. Neurochem. 30:1471.Google Scholar
  68. Quay, W.B., 1964, Circadian and estrous rhythms in pineal melatonin and 5-hydroxyindole-3-acetic acid, Proc. Soc. Exp. Biol. Med. 115:710.Google Scholar
  69. Reiter, R.J., 1980, The pineal and its hormones in the control of reproduction in mammals, Endocr. Rev. 1:109.Google Scholar
  70. Reiter, R.J., Blask, D.E., Johnson, L.Y., Rudeen, P.K., Vaughan, M.K., and Waring, P.J., 1976, Melatonin inhibition of reproduction in the male hamster: its dependency on time of day of administration and on an intact and sympathetically innervated pineal gland, Neuroendocrinol. 22: 107.Google Scholar
  71. Reiter, R.J., Vaughan, M.K., Blask, D.E., and Johnson, L.Y., 1974, Melatonin: its inhibition of pineal antigonadotrophic activity in male hamsters, Science 185: 1169.Google Scholar
  72. Reiter, R.J., Vaughan, M.K., Blask, D.E., and Johnson, L. Y., 1975, Pineal methoxyindoles: new evidence concerning their function in the control of pineal mediated changes in the reproductive physiology of male golden hamsters, Endocrinology 96: 206.Google Scholar
  73. Rogawski, M.A., Roth, R.H., and Aghajanian, G.K., 1979, Melatonin deacetylation to 5-methoxytryptamine by liver but not brain aryl acylamidase. J. Neurochem. 32:1219.Google Scholar
  74. Sackman, J.W., Little, J.C., Rudeen, P.K., Waring, P.J., and Reiter, R.J., 1977, The effects of pineal in-doles given late in the light period on reproductive organs and pituitary prolactin levels in male golden hamsters, Horm. Res. 8:84.Google Scholar
  75. Smith, I., Larson-Carter, D.L., Laud, C.A., Leone, R.M., Silman, R.E., Carter, S.J., Francis, P., Mullen, P. E., Hooper, R.J.L., and Finnie, M.D.A., 1979, O-Acetyl-5-methoxytryptophol - Tentative identification in pineal glands, in: “The Pineal Gland of Vertebrates including Man”, J.Ariëns Kappers and P. Pevet, eds., Prog. Brain Res., 52, Elsevier/NorthHolland, Amsterdam.Google Scholar
  76. Snyder, S.H., and Axelrod, J., 1964, A sensitive assay for 5-hydroxytryptophan decarboxylase, Biochem. Pharmacol., 13:805.Google Scholar
  77. Talbot, J.A., and Reiter, R.J., 1973/1974, Influence of melatonin, 5-methoxytryptophol and pinealectomy on pituitary and plasma gonadotropin and prolactin levels in castrated adult male rats, Neuroendocrinology 13: 164.Google Scholar
  78. Tamarkin, L., Westerom, W.K., Hamill, A.I., and Goldman, B.D., 1976, Effect of melatonin on the reproductive system of male and female Syrian hamsters: A diurnal rhythm in sensitivity of melatonin, Endocrinology 99: 1534.Google Scholar
  79. Trentini, G.P., De Gaetani, G.F., Criscuolo, M., Balemans, M.G.M., Vaessen, H.M.B., and Smith, I., 1982, The effect of melatonin and other indole derivatives in maintaining ovulation in rats kept in continuous light and the influence of these indoles on HIOMT activity in the pineal gland, J. Neural Transm. in press.Google Scholar
  80. Turek, F.W., and Pappas, P., 1980, Daily melatonin injections inhibit short-day-induced testicular regression in hamsters, Experientìa 36: 1426.Google Scholar
  81. Vaughan, M.K., Reiter, R.J., Vaughan, G.M., Bigelow, L., and Altschule, M.D., 1972, Inhibition of compensatory ovarian hypertrophy in the mouse and vole: a comparison of Altschules pineal extract, pineal indoles, vasopressin and oxytocin, Gen. comp. Endocr. 18:372.Google Scholar
  82. Vaughan, M.K., Vaughan, G.M., and Reiter, R.J., 1976, Inhibition of human chorionic gonadotrophin-induced hypertrophy of the ovaries and uterus of immature mice by some pineal indoles, 6-hydroxy-melatonin and arginine vasotocin, J. Endocr. 68:397.Google Scholar
  83. Weissbach, H., Redfield, B.G., and Axelrod, J., 1960, Biosynthesis of melatonin. Enzymic conversion of serotonin to N-acetylserotonin. Biochim. biophys. Acta 43:352.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Paul Pévet
    • 1
    • 2
  1. 1.The Netherlands Institute for Brain Research AmsterdamThe Netherlands
  2. 2.Dept. of Anatomy and EmbryologyUniversity of AmsterdamThe Netherlands

Personalised recommendations