Melatonin Action: Sites and Possible Mechanisms in Brain

  • D. P. Cardinali
  • María I. Vacas
  • María I. Keller Sarmiento
  • E. Morguenstern
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 65)


Knowing what the pineal gland does is a major step towards understanding its physiological function in the body or what it is for. What a hormone-secreting organ like the pineal does can be characterised by defining the nature and quantitative aspects of its input-output relationships, that is what the gland secretes and in response to what. Definition of specific target tissues and intracellular mechanisms of action for the hormone involved should be also included in the de-scription.1


Pineal Gland Melatonin Receptor Exogenous Melatonin Plasma Melatonin Pineal Melatonin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.J. Wurtman and D.P.Cardinali, The pineal organ,,in: “Textbook of Endocrinology”, 5th.ed., R.Williams, ed. W.B.Saunders, Philadelphia (1974) p. 832.Google Scholar
  2. 2.
    D.P.Cardinali, Melatonin. A mammalian pineal hormone, Endocrine Rev. 2: 327 (1981).Google Scholar
  3. 3.
    R.J.Reiter, The pineal and its hormones in the control of reproduction in mammals, Endocrine Rev. 1: 109 (1980).Google Scholar
  4. 4.
    H.J.Chen, Melatonin: failure of pharmacological doses to induce testicular atrophy in the male golden hamster, Life Sci. 28: 767 (1981).Google Scholar
  5. 5.
    L.Tamarkin, W.Westrom, A.Hamill and B.Goldman, Effect of melatonin on the reproductive systems of male and female Syrian hamsters: A diurnal rhythmin.sensitivity to melatonin, Endocrinology 99: 1534 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    E.L.Bittman, Hamster refractoriness: The role of insensitivity of pineal target tissues, Science 202: 648 (1978).PubMedCrossRefGoogle Scholar
  7. 7.
    D.P.Cardinali, Hormone effects on the pineal gland, in: “The Pineal Gland. Vol. I. Anatomy and Biochemistry”, R.J.Reiter, ed., CRC Press, Boca Raton, Fla. (1981) p. 243.Google Scholar
  8. 8.
    S.A.Binkley, Pineal biochemistry: Comparative aspects and circadian rhythms,in: “The Pineal Gland, Vol. I, Anatomy and Biochemistry”, R.J.Reiter, ed., CRC Press, Boca Raton, Fla. (1981) p. 155.Google Scholar
  9. 9.
    D.P.Cardinali, M.N.Ritta, M.I.Uacas, P.R.Lowenstein, P.V.Gejman, C.Gonzalez Solveyra and E.Pereyra, Molecular aspects of neuroendocrine integrative processes in the pineal gland, this volume.Google Scholar
  10. 10.
    B.Withachumnarnkul and K.M.Knigge, Melatonin concentration in cerebrospinal fluid,peripheral plasma and plasma of the confluens sinuum of the rat, Neuroendocrinology 30: 382 (1980).CrossRefGoogle Scholar
  11. 11.
    J.Arendt, L.Wetterberg, T.Heyden, P.C.Sizonenko and L. Paunier, Radioimmunoassay of melatonin: human serum and cerebrospinal fluid, Horm.Res. 8: 67 (1977).CrossRefGoogle Scholar
  12. 12.
    S.M.Reppert, M.J.Perlow, L.Tamarkin and D.C.Klein, A diurnal melatonin rhythm in primate cerebrospinal fluid, Endocrinology 104: 295 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    M.D.Rollag, R.J.Morgan and G.D.Niswender, Route of melatonin secretion in sheep, Endocrinology 102: 1 (1978).PubMedCrossRefGoogle Scholar
  14. 14.
    F.P.Gibbs and J.Uriend, The half-life of melatonin elimination from rat plasma, Endocrinology 109: 1796 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    D.J.Kennaway, C.D.Matthews and R.F.Seamark, Pineal function in pregnancy: Studies in sheep and man, in: “Pineal Function”, C.D.Matthews and R.F.Seamark,eds. Elsevier, Amsterdam, (1981), p. 123.Google Scholar
  16. 16.
    U.Weinberg, F.J.Gasparini and E.D.Weitzman, The developmental pattern of in vitro rat liver melatonin degrading activity, Endocrinology 108: 1081 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    I.J.Kopin, C.M.B.Pare, J.Axelrood and H.Weissbach, The fate of melatonin in mammals, J.Biol.Chem. 236: 3072 (1961).PubMedGoogle Scholar
  18. 18.
    A.J.Fellenberg, G.Phillipou and R.F.Seamark, Urinary 6-sulphatoxy melatonin excretion and melatonin production rate: Studies in sheep and man, in: “Pineal Function”, C.D.Matthews and R.F.Seamark, eds.; Elsevier, Amsterdam (1981), p. 143.Google Scholar
  19. 19.
    M.Tetsuo,M.J.Perlow, M.Mishkin and P.Markey, Light exposure reduces and pinealectomy virtually stops urinary excretion of 6-hydroxymelatonin by Rhesus monkey, Endocrinology 110: 997 (1982).PubMedCrossRefGoogle Scholar
  20. 20.
    O.Beck and G.Jonsson, In vivo formation of 5-methoxytryptamine from melatonin in rat, J.Neurochem. 36: 2013 (1981).PubMedCrossRefGoogle Scholar
  21. 21.
    F.Hirata, O.Hayaishi, T.Fokuyama and S.Senoh, In vitro and in vivo formation of two new metabolites of melatonin, J.Biol.Chem. 249: 1311 (1974).PubMedGoogle Scholar
  22. 22.
    D.P.Cardinali, H.J.Lynch and R.J.Wurtman, Binding of melatonin to human and rat plasma proteins, Endocrinology 91: 1213 (1972).PubMedCrossRefGoogle Scholar
  23. 23.
    W.M.Pardridge and L.J.Mietus, Transport of albumin- bound melatonin through the blood-brain barrier, J.Neurochem. 34: 1761 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    G.P.Trentini, B.Mess, Gaetani and C.Ruzsâs, Pineal-brain relationship, Prog.Brain Res. 52: 341 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    A.P.Smulders and E.M.Wright, Role of choroid plexus in transport of melatonin between blood and brain, Brain Res. 191: 155 (1980).CrossRefGoogle Scholar
  26. 26.
    R.J.Wurtman, J.Axelrod and L.T.Potter, The uptake of H3-melatonin in endocrine and nervous tissues and the effects of constant light exposure, J.Pharmacol.Exp. Ther., 143: 314 (1964).PubMedGoogle Scholar
  27. 27.
    F.Anton-Tay and R.J.Wurtman, Regional uptake of 3H-melatonin from blood or cerebrospinal fluid by rat brain, Nature, 221: 474 (1969).PubMedCrossRefGoogle Scholar
  28. 28.
    D.P.Cardinali, M.T.Hyyppä and R.J.Wurtman, Fate of intracisternally injected melatonin in the rat brain, Neuroendocrinology 12: 30 (1973).PubMedCrossRefGoogle Scholar
  29. 29.
    S.H.Koslow and A.R.Green, Analysis of pineal and brain indolealkylamines by gas chromatography-mass spectrometry, Adv.Biochem.Psychopharmacol. 7: 33 (1973).PubMedGoogle Scholar
  30. 30.
    G.Brown, L.Grota, G.Bubenik, L.Niles and H.Tsui, Physiologic regulation of melatonin, Adv.Biosci. 29: 95 (1981).Google Scholar
  31. 31.
    F.W.Turek and P.Pappas, Inhibition of short-day induced testicular regression in the hamster by daily melatonin injections, Experientia 36: 1426 (1980).Google Scholar
  32. 32.
    S.H.Loose and F.W.Turek, Melatonin treatment prevents the termination of the gonadal refractory condition normally observed in hamsters exposed to long days, in: “Pineal Function”, C.D.Matthews and R.F.Seamark, eds., Elsevier, Amsterdam (1981) p. 67.Google Scholar
  33. 33.
    K.M.Knigge and M.N.Sheridan, Pineal function in hamsters bearing melatonin antibodies, Life Sci. 19: 1235 (1976).Google Scholar
  34. 34.
    F.Fraschini, R.Collu and L.Martini, Mechanisms of inhibitory action of pineal principles on gonadotropin secretion, in: “The Pineal Gland”, G.E.W.Wolstenholme and J.Knight, eds., Churchill Livingstone, London, (1971) p, 259.Google Scholar
  35. 35.
    K.Yamashita, M.Mieno, T.Shimizu and E. Yamashita, Inhibition by melatonin of the pituitary response to luteinizing hormone releasing hormone in vivo, J. Endocrinol. 76: 487 (1978).PubMedCrossRefGoogle Scholar
  36. 36.
    J.D.Glass and G.R.Lynch, Evidence for a brain site of melatonin action in the white-footed mouse, Peromysv cus leucopus, Neuroendocrinology 34: 1 (1982).CrossRefGoogle Scholar
  37. 37.
    R.J.Reiter, “The Pineal. Vol. 6”, Eden Press, Quebec (1981).Google Scholar
  38. 38.
    B.Rusak, Suprachiasmatic lesions prevent an antigonadal effect of melatonin, Biol.Reprod. 22: 148 (1980).Google Scholar
  39. 39.
    J.E.Martin and C.Sattler, Selectivity of melatonin pituitary inhibition for luteinizing hormone-releasing hormone, Neuroendocrinology 34: 112 (1982).Google Scholar
  40. 40.
    M.R.Faigbn, D.P.Cardinali and J.Moguilevsky, Pinealectomy advances the time of development of steroid positive feedback on luteinizing hormone release in immature female rats, Brain Res, in press.Google Scholar
  41. 41.
    W.B.Quay, “Pineal Chemistry”, C.Thomas, Springfield, III, (1974).Google Scholar
  42. 42.
    B.Goldman, U.Hall, C.Hollister, P.Roychoudhury, L. Tamarkin and W.Westrom, Effects of melatonin on the reproductive system in intact and pinealectomized male hamsters maintained under various photoperiods, Endocrinology 104: 82 (1979).PubMedCrossRefGoogle Scholar
  43. 43.
    D.E.Blask, C.A.Leadem and B.A.Richardson, Nutritional status, time of day and pinealectomy: Factors influencing the sensitivity of the neuroendocrine-reproductive axis of the rat to melatonin, Horm.Res., 14: 104 (1981).PubMedCrossRefGoogle Scholar
  44. 44.
    L.J.Hipkin, Effect of 5-methoxytryptophol and melatonin on uterine weight responses to human chorionic gonado-tropin, J.Endocrinol. 48: 287 (1970).Google Scholar
  45. 45.
    R.Alonso, L.Prieto, C.Hernândez and M.Mas, Antiandrogenic effects of pineal gland and melatonin in castrated an intact prepubertal male rats, J.Endocrinol. 79: 77 (1978).PubMedCrossRefGoogle Scholar
  46. 46.
    G.P.Trentini, A.R.Botticelli, B.C.Sannicola and C.Barbanti Silva, Decreased ovarian LH incorporation after melatonin treatment, Horm.Metab.Res. 8: 234 (1976).PubMedCrossRefGoogle Scholar
  47. 47.
    L.Debeljuk, U.M.Feder and O.A.Paulucci, Effects of melatonin on changes induced by castration and testosterone in sexual accessory structures of male rats, Endocrinology 87: 1358 (1970).PubMedCrossRefGoogle Scholar
  48. 48.
    L.C.Ellis, Inhibition of rat testicular androgen synthesis in vitro by melatonin and serotonin, Endocrinology 90: 17 (1972).Google Scholar
  49. 49.
    D.P.Cardinali and J.M.Rosner, Effects of melatonin,serotonin and N-acetylserotonin on the production of steroids by duck testicular homogenates, Steroids 18: 25 (1971).Google Scholar
  50. T.F.Ogle and J.I.Kitay, In vitro effects of melatonin and serotonin on adrenal steroidogenesis, Proc.Soc. Exp.Biol.Med. 57: 103 (1978).Google Scholar
  51. 51.
    M.F.Gimeno,M.N.Ritta, A.Bonacossa, M.Lazzari, A.L. Gimeno and D.P.Cardinali, Inhibition by melatonin of prostaglandin synthesis in hypothalamus, uterus and platelets, Adv.Biosci. 29: 147 (1981).Google Scholar
  52. 52.
    M.Cohen, D.Roselle, B.Chabner, T.J.Schmidt and M.Lippman, Evidence for a cytoplasmic melatonin receptor,Nature 274: 894 (1978).PubMedCrossRefGoogle Scholar
  53. 53.
    U.Lang and P.C.Sizonenko, Tissue and cellular location of melatonin receptors “Internat.Symposium on Melatonin”, Bremen, F.R.G., Sept. 28–30 (1980). abst.143.Google Scholar
  54. 54.
    D.P.Cardinali and J.M.Rosner, Metabolism of serotonin by the rat retina in vitro, J.Neurochem. 18: 1769 (1971).Google Scholar
  55. 55.
    D.P.Cardinali and R.J.Wurtman, Hydroxyindole-O-methyl transferases in rat pineal, retina and Harderian gland, Endocrinology 91: 247 (1972).Google Scholar
  56. 55a.
    C.D.Matthews and A.Y.S.Leong, A possible role for the pineal gland and melatonin in the diffuse neuroendocrine system (DNES) Adv.Biosci. 29: 77 (1981).Google Scholar
  57. 56.
    D.P.Cardinali, M.I.Uacas and E.E.Boyer, High affinity binding of melatonin in bovine medial basal hypothalamus, IRCS Med.Sci. 6: 357 (1978).Google Scholar
  58. 57.
    D.P.Cardinali, M.I.Vacas and E.E.Boyer, Specific binding of melatonin in bovine brain, Endocrinology 105: 437 (1979).PubMedCrossRefGoogle Scholar
  59. 58.
    E.A.Messenger and A.E.Warner, The action of melatonin on single amphibian pigment cells in tissue culture, Br.J.Pharmacol. 61: 607 (1977).Google Scholar
  60. 59.
    M.I.Uacas and D.P.Cardinali, Binding sites for melatonin in bovine pineal gland, Horm.Res. 13: 121 (1980).Google Scholar
  61. 60.
    C.L.Ralph, Melatonin production by extra-pineal tissues, Adv.Biosci. 29: 35 (1981).Google Scholar
  62. 61.
    W.M.Gern, T.A.Gorell and D.W.Owens, Melatonin and pigment cell rhythmicity, Idv.Biosci. 29: 223 (1981).Google Scholar
  63. 62.
    D.P.Cardinali and M.I.Uacas, Molecular endocrinology of melatonin: Receptor sites in brain and peripheral organs, Adv.Biosci. 29: 237 (1981).Google Scholar
  64. 63.
    M.I.Vacas and D.P.Cardinali, Diurnal changes in melatonin binding sites of hamster and rat brains. Correlation with neuroendocrine responsiveness to melatonin, Neurosci.Lett. 15: 259 (1979).Google Scholar
  65. 64.
    L.Tamarkin, N.G.Lefebvre, C.W.Hollister and B.D.Goldman, Effect of melatonin administered during the night on reproductive function in the Syrian hamster, Endocrinology 101: 631 (1977).PubMedCrossRefGoogle Scholar
  66. 65.
    L.J.Grota, W.R.Holloway and G.M.Brown, 24-Hour rhythm of hypothalamic immunofluorescence correlates with serum and retinal melatonin rhythms. Neuroendocrinology. 34: 363 (1982).Google Scholar
  67. 66.
    P.J.Marangos, J.Patel, F.Hirata, D.Sondhein, S.M.Paul, P.Skolnick and F.K.Goodwin, Inhibition of diazepam binding by tryptophan derivatives including melatonin and its brain metabolite N-acetyl-5-methoxy Kynurenamine, Life Sci 29: 259 (1981).Google Scholar
  68. D.P.Cardinali and F.Freire, Melatonin effects on brain. Interaction with microtubule protein, inhibition of fast axoplasmic flow and induction of crystaloid and tubular formations in the hypothalamus, Mol.Cell. Endocr. 2: 317 (1975).Google Scholar
  69. 68.
    E.J.Roy and M.A.Wilson, Diurnal rhythm of cytoplasmic estrogen receptors in the rat brain in the absence of circulating estrogens, Science 213: 1523 (1981).Google Scholar
  70. 69.
    R.L.Urry and L.C.Ellis, Monoamine oxidase activity of the hypothalamus and pituitary alterations after pinealectomy, changes in photoperiod or addition of melatonin in vitro, Experientia 31: 891 (1975).PubMedGoogle Scholar
  71. 70.
    D.P.Cardinali, C.A.Nagle, F.Freire and J.M.Rosner, Effects of melatonin on neurotransmitter uptake and release by synaptosome-rich homogenates of the rat hypothalamus, Neuroendocrinology 18: 72 (1975).PubMedCrossRefGoogle Scholar
  72. 71.
    N.Zisapel and M.Laudon, Dopamine release induced by electrical field stimulation of rat hypothalamus in vitro: inhibition by melatonin, Biochem.Biophys,Res. Comm., 104: 1610 (1982).Google Scholar
  73. 72.
    F.Anton-Tay, Melatonin: Effects on brain function, Adv. Biochem.Psychopharmacol. 11: 315 (1974).PubMedGoogle Scholar
  74. 73.
    L.W.L.Kao and J.Weisz, Release of gonadotrophin-releasing hormone (On-RH) from isolated, perfused medial basal hypothalamus by melatonin, Endocrinology 100: 1723 (1977).Google Scholar
  75. 74.
    S.B.Richardson, C.S.Hollander, J.A.Prasad and T.Hirooka, Somatostatin release from rat hypothalamus in vitro: effects of melatonin and serotonin, Endocrinology 109: 602 (1981).PubMedCrossRefGoogle Scholar
  76. 75.
    C.S.Hollander, J.A.Prasad, S.Richardson, Y.Hirooka and S.Suzuki, Melatonin modulates hormonal release from organ cultures of rat hypothalamus, J.Neural Transm supp1. 13: 369 (1978).Google Scholar
  77. 76.
    J.Leonardelli, G.Tramu and E.Hermand, Mélatonine et cellules a gonadolibérine (LH-RH) de l’hypothalamus du rat, C.R.Soc.Biol. 172: 481 (1978).Google Scholar
  78. 77.
    D.P.Cardinali, M.N.Ritta, A.M.Fuentes, M.G.Gimeno and A.L.Gimeno, Prostaglandin E release by rat medial basal hypothalamus in vitro. Inhibition by melatonin at submicromolar concentrations, Eur.J.Pharmacol. 67: 151 (1980).PubMedCrossRefGoogle Scholar
  79. 78.
    C.M.Leach, J.A.Reynoldson and G.D.Thornburn, Release of E prostaglandins into the cerebrospinal fluid and its inhibition by melatonin after cervical stimulation in the rabbit, Endocrinology 110: 1320 (1982).PubMedCrossRefGoogle Scholar
  80. 79.
    M.I.Uacas, M.I.Keller Sarmiento and D.P.Cardinali, Melatonin increases cGMP and decreases cAMP levels in rat medial basal hypothalamus in vitro, Brain Res. 225: 207 (1981).CrossRefGoogle Scholar
  81. 80.
    C.Demaine and H.C.Kann, Modification of the electrical activity of hypothalamic neurones by pineal indoles, Proq.Brain Res. 52: 373 (1979).Google Scholar
  82. M.F.Gimeno, A.Landa, N.S.Speziale, D.P.Cardinali and A.L.Gimeno, Melatonin blocks in vitro generation of prostaglandin by the uterus and hypothalamus, Eur.J. Pharmacol. 62: 309 (1980).Google Scholar
  83. 82.
    C.M.Leach and G.D.Thornburn, A comparison of the inhibitory effects of melatonin and indomethacin on platelet aggregation and thromboxane release, Prostaglandins 20: 51 (1980).Google Scholar
  84. 83.
    S.R.Ojeda, A.Negro-Vilar and S.M.McCann, Role of.prostaglandins in the control of pituitary hormone secretion in: “Physiopathology of Endocrine Diseases and Mechanisms of Hormone Action”, R.J.Soto, Nicola and J.Blaquier, eds., Alan R.Liss Inc., New York (1981).Google Scholar
  85. 84.
    R.L.Eskay, J.Warberg, R.S.Mical and J.C.Porter, Prostaglandin E2-induced release of LHRH into hypophysial portal blood, Endocrinology 97: 816 (1975).PubMedCrossRefGoogle Scholar
  86. 85.
    S.R.Ojeda, A.Negro-Vilar and S.M.McCann, Release of prostaglandin Es (PGE) by hypothalamic tissue. Evidence for their involvement in catecholamine-induced LHRH release, Endocrinology 104: 617 (1979).Google Scholar
  87. 86.
    D.P.Cardinali, J.F.Pardal, M.F.Gimeno and A.L.Gimeno, Effects of estradiol on norepinephrine and prostaglandin efflux in medial basal hypothalamus of ovariectomized rats, J.Neural Transm. 53: 39 (1982).PubMedCrossRefGoogle Scholar
  88. 87.
    L.Levine and L.J.Riceberg, Radioimmunoassay for melatonin, Res.Comm.Chem.Pathol.Pharmacol. 10: 693 (1975)Google Scholar
  89. 88.
    D.Rudman, Injection of melatonin into cisterna magna increases concentration of 3’,5’-cyclic guanosine monophosphate in cerebrospinal fluid, Neuroendocrinology 20: 235 (1976).Google Scholar
  90. 89.
    T.Kano and T.Miyachi, Directaction of melatonin on testosterone and cyclic GMP production using rat testis tissue in vitro, Biochem.Biophys.Res.Comm. 72: 969 (1976).Google Scholar
  91. 90.
    J.A.Sandler, R.I.Clyman, U.C.Manganiello and M.Vaughan, The effect of serotonin (5-hydroxytryptamine) and derivatives on guanosine 3’,5’-monophosphate in human monocytes, J.Clin.Invest. 55: 431 (1975).PubMedCrossRefGoogle Scholar
  92. 91.
    B.Weatherhead and A.Logan, Cyclic nucleotides and the mediation of melatonin-induced inhibition of melanogenesis in mammals, Adv.Biosci. 29: 263 (1981).Google Scholar
  93. 92.
    D.L.Vessely, Melatonin enhances guanylate cyclase activity in a variety of tissues, Mol.Cell.Biochem. 35: 55 (1981).CrossRefGoogle Scholar
  94. 93.
    P.Greengard, “Cyclic Nucleotides, Phosphorylated Proteins and Neuronal Function. Distinguished Lecture Series of the Society of General Physiologists. Vol. 1”, Raven Press, New York, (1978).Google Scholar
  95. 94.
    C.R.Partington, M.W.Edwards and J.W.Daly, Regulation of cyclic AMP formation in brain tissue byo(-adrenergic receptors: Requisite intermediancy of prostaglandins of the E series. Proc.Nat.Acad.Sci.USA 77: 3024 (1980).PubMedCrossRefGoogle Scholar
  96. 95.
    D.P.Cardinali, , Adv.Biosci. 29: 247 (1981).Google Scholar
  97. 96.
    D.P.Cardinali, M.I.Vacas, A.L.Fortis and F.J.Stefana, Superior cervical ganglionectomy depresses narepinephrine uptake, increases the density of oC-adrenoceptor sites, and induces supersensitivity to adrenergic drugs in rat medial basal hypothalamus, Neuro-endocrinology 33: 199 (1981).Google Scholar
  98. 97.
    M.R.Prevedello, M.N.Ritta and D.P.Cardinali, Fast axonal transport in rat sciatic nerve, Inhibition by pineal indbles, Neurosci.Lett. 13: 29 (1979).CrossRefGoogle Scholar
  99. 98.
    M.S.Haswell, W.A.Gern and C.L.Ralph, Melatonin inhibition of vasopressin-stimulated water transport in toad urinary bladder, J.Exp.Zool. 211: 407 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • D. P. Cardinali
    • 1
  • María I. Vacas
    • 1
  • María I. Keller Sarmiento
    • 1
  • E. Morguenstern
    • 1
  1. 1.Centro de Estudios Farmacológicos y de Principios Naturales (CEFAPRIN)Buenos AiresArgentina

Personalised recommendations