Macrophage Activation pp 33-56 | Cite as
Alterations of Surface Properties by Macrophage Activation: Expression of Receptors for Fc and Mannose-Terminal Glycoproteins and Differentiation Antigens
Abstract
The original definition of the activated macrophage described the altered function of these cells in antimicrobial activity and cell-mediated immunity (Mackaness, 1964), yet when the role of the macrophage in mammalian physiology and pathology is considered it is apparent that this definition may be too restricted. Inflammation, tissue remodeling, degradation, and turnover of normal body constituents and antitumor resistance could be more general expressions of enhanced macrophage functions. With these different roles in mind, it is necessary to consider the properties that distinguish acquired states of activation from the nonactivated or resident state.
Keywords
Peritoneal Macrophage Macrophage Activation Phorbol Myristic Acetate Purify Protein Derivative Mouse Peritoneal MacrophagePreview
Unable to display preview. Download preview PDF.
References
- Adlam, C., Broughton, E. S., and Scott, M. T., 1972, Enhanced resistance of mice to infection with bacteria following pretreatment with Corynebacterium parvurn, Nature 235: 219–220.CrossRefGoogle Scholar
- Ault, K. A., and Springer, T. A., 1981, Cross-reaction of a rat-antimouse phagocyte specific monoclonal antibody (anti-Mac-1) with human monocytes and natural killer cells, J. Immunol 126: 359–364.PubMedGoogle Scholar
- Austyn, J. A., and Gordon, S., 1981, F4/80, a monoclonal antibody directed specifically against the mouse macrophage, Eur. J. Immunol 11: 805–815.PubMedCrossRefGoogle Scholar
- Beller, D., Springer, T. A., and Schreiber, R. D., 1982, Anti-Mac-1 selectively inhibits the mouse and human by the type three complement receptor, J. Exp. Med 156: 1000 1009.Google Scholar
- Berton, G. and Gordon, S., 1983, Superoxide release by peritoneal and bone-marrow derived mouse macrophages, modulation by adherence and cell activation, Immunol. 49: 693704.Google Scholar
- Cheers, C., and Waller, R., 1975, Activated macrophages in congenitally athymic “nude” mice and in lethally irradiated mice, J. Immunol 115: 844–847.PubMedGoogle Scholar
- Cummings, N. P., Pabst, M. J., and Johnston, R. B. Jr., 1980, Activation of macrophages for enhanced release of superoxide anion and greater killing of Candida albicans by injection of muramyl dipeptide, J. Exp. Med. 152: 1659–1669.PubMedCrossRefGoogle Scholar
- Cutler, J. El and Poor, A. H., 1981, Effect of mouse phagocytes on Candida albicans in in vivo chambers, Infect. Immun 31: 1110–1116.PubMedGoogle Scholar
- Diamond, B., and Yelton, D., 1981, A new Fc receptor on mouse macrophages binding IgG3, J. Exp. Med 153: 514–519.PubMedCrossRefGoogle Scholar
- Edelson, P. J., and Cohn, Z. A., 1976, 5’ nucleotidase activity of mouse peritoneal macrophages. 1. Synthesis and degradation in resident and inflammatory populations, J. Exp. Med 144: 1581–1595.Google Scholar
- Edelson, P. J., Zweibel, R., and Cohn, Z. A., 1975, Pinocytic rate of activated macrophages, J. Exp. Med 142: 1150–1164.PubMedCrossRefGoogle Scholar
- Ezekowitz, R. A. B., and Gordon, S., 1982, Down regulation of mannosyl-receptor-mediated endocytosis and antigen F4/80 in BCG-activated mouse macrophages. Role of T lymphocytes and lymphokines, J. Exp. Med 155: 1623–1637.PubMedCrossRefGoogle Scholar
- Ezekowitz, R. A. B., Austyn, J. A., Stahl, P., and Gordon, S., 1981, Surface properties of Bacillus Calmette-Guérin-activated mouse macrophages. Reduced expression of mannosespecific endocytosis, Fc receptors and antigen F4/80 accompanies induction of Ia, J. Exp. Med 154: 60–76.PubMedCrossRefGoogle Scholar
- Ezekowitz, R. A. B., Bampton, M., and Gordon, S., 1983, Macrophage activation selectively enhances expression of Fc receptors for IgG2a, J. Exp. Med 157: 807–812.PubMedCrossRefGoogle Scholar
- Ghaffar, A., 1980, The activation of macrophages by Corynebacterium parvum: Effects of anticomplementary agents cobra venom factor and sodium cyanate, Res. J. Reticuloendothel. Soc 27: 327–332.Google Scholar
- Gordon, S., and Cohn, Z. A., 1978, Bacille Calmette-Guérin infection in the mouse. Regulation of macrophage plasminogen activator by T lymphocytes and specific antigen, J. Exp. Med 147: 1175–1188.PubMedCrossRefGoogle Scholar
- Gordon, S., and Werb, Z., 1975, Elastase secretion by stimulated macrophages. Characterization and regulation, J. Exp. Med 142: 361–377.PubMedCrossRefGoogle Scholar
- Gordon, S., Todd, J,and Cohn, Z. A., 1974, In vitro synthesis and secretion of lysozyme by mononuclear phagocytes, J. Exp. Med 139:1228–1248.Google Scholar
- Grosskinsky, M., Ezekowitz, R. A. B., Berton, G., Gordon, S., and Askonas, B., 1983, Macro- phage activation in murine African Trypanosomiasis, Infect. Immun 39: 1080–1086.PubMedGoogle Scholar
- Herlyn, D., and Koprowski, H., 1982, IgG2a monoclonal antibodies inhibit human tumor growth through interaction with effector cells, Proc. Natl. Acad. Sci. USA 79: 47614765.Google Scholar
- Heusser, C. H., Anderson, C. L., and Grey, H. M., 1977, Receptors for IgG: Subclass specificity of receptors on different mouse cell types and the definition of two distinct receptors on a macrophage cell line, J. Exp. Med 145: 1316–1327.PubMedCrossRefGoogle Scholar
- Hirsch, S., Austyn, J. M., and Gordon, S., 1981, Expression of macrophage specific antigen F4/80 during differentiation of mouse bone marrow cells in culture, J. Exp. Med 152: 713–725.CrossRefGoogle Scholar
- Huinig, T., and Bevan, M. J., 1980, Specificity of cytotoxic T cells from athymic mice, J. Exp. Med 152: 688–702.CrossRefGoogle Scholar
- Hume, D. A., Robinson, A. P., MacPherson, S. S., and Gordon, S., 1983, Mononuclear phagocyte system of mouse defined by immunohistochemical localization of antigen F4/80, J. Exp. Med. 158: 1522–1536.PubMedCrossRefGoogle Scholar
- Imber, M. J, Pizzo, S. V., Johnson, W. J., and Adams, D. D., 1982, Selective diminution of the binding of mannose by murine macrophages in the late stages of activation, J. Biol. Chem 257: 5129–5135.Google Scholar
- Johnston, R. B. Jr., Godzik, C. A., and Cohn, Z. A., 1978, Increased superoxide anion production by immunologically activated and chemically elicited macrophages, J. Exp. Med 148: 115–127.PubMedCrossRefGoogle Scholar
- Kaplan, G., Unkeless, J. C., and Cohn, Z. A., 1979, Insertion and turnover of macrophage plasma membrane proteins, Proc. Natl. Acad. Sci. USA 76: 3824–3828.PubMedCrossRefGoogle Scholar
- Kossard, S., and Nelson, D. S., 1968, Studies on cytophilic antibodies IV. The effects of proteolytic enzymes (trypsin and papain) on the attachment to macrophages of cytophilic antibodies, Aust. J. Exp. Biot Med. Sci 46: 63–69.CrossRefGoogle Scholar
- Kurzinger, K., Ho, M. K., Springer, T. A., 1982, Structural homology of a macrophage differentiation antigen and an antigen involved in T-cell-mediated killing, Nature 296: 6686 70.Google Scholar
- Lane, B. C., and Cooper, M. S., 1982, Fc receptors of mouse macrophage cell lines. 1. Distinct proteins mediate the IgG subclass-specific Fc binding activities of macrophages, J. Immunol 128: 1819–1824.PubMedGoogle Scholar
- Mackaness, G. B., 1964, The immunological basis of acquired cellular resistance, J. Exp. Med 120: 105–112.PubMedCrossRefGoogle Scholar
- McMaster, W. R., and Williams, A. F., 1979, Monoclonal antibodies to la antigens from rat thymus. Cross reactions with mouse and human and use in purification of Rat Ia glycoproteins, Immunol. Rev 47: 117–131.PubMedCrossRefGoogle Scholar
- Mason, D., Dallman, M., and Barclay, N., 1981, Graft-versus-host disease induces expression of la antigen in rat epidermal cells and gut epithelium, Nature 293: 150–151.PubMedCrossRefGoogle Scholar
- Matthews, I J., Collins, J. J., Roloson, C. J., Thiel, H. J., and Bolognesi, D. P., 1981, Immunological control of the ascites form of murine adenocarcinoma, J. Immunol 126: 2332–2336.Google Scholar
- Mellman, I Unkeless, J. C., Steinman, R., and Cohn, Z. A., 1981, Internalisation and fate of Fc receptors during endocytosis, J. Cell Biol 91:124a.Google Scholar
- Meltzer, M., 1981, Tumor cytotoxicity by lumphokine-activated macrophages: Development of macrophage tumoricidal activity requires a sequence of reactions, Lymphokines 3: 319–329.Google Scholar
- Mich!, J., Pieczonka, M. M., Unkeless, J. C., and Silverstein, S. C., 1980, Effects of immobilized immune complexes on Fc-and complement-receptor function in resident and thioglycollate-elicited mouse peritoneal macrophages, J. Exp. Med 150: 607.CrossRefGoogle Scholar
- Nathan, C. F., and Cohn, Z. A., 1980, Role of oxygen-dependent mechanisms in antibody- induced lysis of tumor cells by activated macrophages, J. Exp. Med 152: 198–208.PubMedCrossRefGoogle Scholar
- Nathan, C. F., and Root, R. K., 1977, Hydrogen peroxide release from mouse peritoneal macrophages. Dependence on sequential activation and triggering, J. Exp. Med 146: 1648–1662.PubMedCrossRefGoogle Scholar
- Nathan, C. F., Silverstein, S. C., Brukner, L. H. and Cohn, Z. A., 1979, Extracellular cytolysis by activated macrophages and granulocytes. 11. Hydrogen peroxide as a mediator of cytotoxicity, J. Exp. Med 149: 100–113.PubMedCrossRefGoogle Scholar
- Nussensweig, M. C., Steinman, R. M., Gutchman, B., and Cohn, Z. A., 1980, Dendritic cells are accessory cells for the development of anti-trimetrophenyl cytotoxic T lymphocytes, J. Exp. Med 152: 1070–1084.CrossRefGoogle Scholar
- Old, L. J., Benacerraf, B., Clarke, D. A., Carswell, C. E., and Stockart, E., 1961, The role of the reticuloendothelial system in host reaction in neoplasia, Cancer Res. 21: 1281–1291.PubMedGoogle Scholar
- Pabst, M. J. and Johnson, R. B., Jr., 1980, Increased production of superoxide by macro- phages exposed in vitro to muramyl-dipeptide or endotoxin, J. Exp. Med 151: 101–110.PubMedCrossRefGoogle Scholar
- Parant, M., Parant, F., and Chedid, L., 1978, Enhancement of the neonate’s nonspecific immunity to Klebsiella infection by muramyl dipeptide, a synthetic immunoadjuvant, Proc. Natl. Acad. Sci. USA 75: 23395–23399.CrossRefGoogle Scholar
- Paulowski, N. A., Scott, W. A., Andreach, M., and Cohn, Z. A., 1982, Uptake and metabolism of monohydroxy-eicosatetraenoic acids by macrophages, J. Exp. Med 135: 1653–1664.CrossRefGoogle Scholar
- Rabinovitch, M., Manejias, R. E., Russo, M., and Abbey, E. E., 1977, Increased spreading of macrophages from mice treated with interferon inducers, Cell. Immunol 29: 86–95.PubMedCrossRefGoogle Scholar
- Ranges, G. E., Gildstein, S., Boyse, E. A., and Schield, M. P., 1982, T cell development in normal and thymopoietin-treated nude mice, J. Exp. Med 156: 1057–1060.PubMedCrossRefGoogle Scholar
- Remold-O’Donnell, R. E., and Lewandrowski, K., 1982, Decrease of the major surface glycoprotein gp160 in activated macrophages. Cell Immunol. 70: 85–93.CrossRefGoogle Scholar
- Stahl, P., Schlesinger, P. H., Sigardson, E., Rodman, J. S., and Lee, Y. C., 1980, Receptor mediated pinocytosis of mannose glycoconjugates by macrophages. Characterization and evidence for receptor recycling, Cell 19: 207–211.PubMedCrossRefGoogle Scholar
- Stahl, P., and Gordon, S., 1982, Expression of a mannose-fucosyl receptor for endocytosis on cultured primary macrophages and their hybrids, J. Cell Biol 93: 49–62.PubMedCrossRefGoogle Scholar
- Steeg, P. S., Moore, R. N., and Oppenheim, J. J., 1980, Regulation of murine macrophage la antigen expression by products of activated spleen cells, J. Exp. Med 152: 1734 1744.Google Scholar
- Steinman, R. M., Nogueira, N., Witmer, M. D., Tydings, J. D., and Mellman, I. S., 1980, Lymphokine enhances the expression and synthesis of la antigens on cultured mouse peritoneal macrophages, J. Exp. Med 152: 1248–1261.PubMedCrossRefGoogle Scholar
- Taniyama, T. and Watanabe, T., 1982, Establishment of a hybridoma secreting a monoclonal antibody specific for activated tumorcidal macrophages, J. Exp. Med 156: 1286–1292.PubMedCrossRefGoogle Scholar
- Unkeless, J., and Eisen, H. N., 1975, Binding of monomeric immunoglobuline to Fc receptors of mouse macrophages, J. Exp. Med 142: 1520–1538.PubMedCrossRefGoogle Scholar
- Unkeless, J., 1979, Characterization of monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors, J. Exp. Med 150: 580–596.PubMedCrossRefGoogle Scholar
- Unkeless, J., Fleet, H., and Mellman, I. S., 1981, Structural agents and heterogeneity of immunoglobulin Fc receptors, Adv. Immun 31: 247–268.PubMedCrossRefGoogle Scholar
- Woodruff, M., and Boak, J. L., 1966, Inhibitory effect of injection of Corynebacterium parvum on the growth of tumor transplants in isogenic hosts, Br. J. Cancer 20: 345349.Google Scholar
- Yin, H., Aley, S., Bianco, C., and Cohn, Z. A., 1980, Plasma membrane polypeptides of resident and activated mouse peritoneal macrophages, Proc. Natl. Acad. Sci. USA 77: 2188–2196.PubMedCrossRefGoogle Scholar