Skip to main content

Models of Adoptive T-Cell-Mediated Regression of Established Tumors

  • Chapter

Part of the book series: Contemporary Topics in Immunobiology ((CTI,volume 13))

Abstract

Most of the chapters in this volume deal with the physiology and protective functions of macrophages as revealed by in vitro assays. Evidence that activated macrophages can express tumoristatic or tumoricidal function in vitro has been accumulating for 15 years or so and has resulted in the suggestion (Adams and Snyderman, 1979) that macrophages play a role in protecting against neoplastic colonization. It might be inferred, on the basis of in vitro evidence, moreover, that macrophages have the potential to destroy an established growing tumor, provided ways could be found to cause these cells to acquire tumoricidal function in the tumor bed. There is evidence (Evans, 1972; Russel and McIntosh, 1977) that progressive tumors can contain surprisingly large numbers of macrophages. It also has been shown (Russel and McIntosh, 1977) that Moloney sarcomas undergoing spontaneous regression in syngeneic mice contain macrophages that, on isolation, can lyse tumor cells in vitro. However, because of the reductionistic nature of the evidence obtained, no number of results obtained with in vitro assays can permit the conclusion that macrophages destroy tumors in vivo. The same criticism can be leveled against evidence showing that tumor-sensitized cytolytic T cells and natural killer (NK) cells lyse tumor cells in vitro. Sooner or later experiments will have to be designed to determine whether any one of these types of host cells, in the absence of the others, can express tumoricidal function in vivo and destroy an established tumor. The best models to employ in an attempt to identify the ultimate effectors of tumor regression would be models of immunologically mediated regression of established tumors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. O., and Snyderman, R., 1979, Do macrophages destroy nascent tumors? J. Natl. Cancer Inst. 62: 1341.

    PubMed  CAS  Google Scholar 

  • Baldwin, R. W., and Pimm, M. V., 1973, BCG immunotherapy of a rat sarcoma, Br. J. Cancer 28: 281.

    Article  PubMed  CAS  Google Scholar 

  • Bast, R. C., Bast, B. S., and Rapp, H. J., 1976, Critical review of previously reported animal studies of tumor immunotherapy with non-specific immunostimulants, J. Natl. Cancer Inst. 277: 60.

    CAS  Google Scholar 

  • Berendt, M. J., and North, R. J., 1980, T cell-mediated immunosuppression of anti-tumor immunity. An explanation for the progressive growth of an immunogenic tumor, J. Exp. Med. 151: 69.

    Article  PubMed  CAS  Google Scholar 

  • Bonventre, P. F., Nickol, A. D., Ball, E. J., Michael, J. G., and Bubel, H. C., 1982, Development of protective immunity against bacterial and viral infections in tumor-bearing mice coincident with suppression of tumor immunity, J. Reticuloendothel. Soc. 32: 25.

    PubMed  CAS  Google Scholar 

  • Brunner, K. T., MacDonald, H. R., and Cerottini, J. C., 1981, Quantitation and clonal isolation of cytolytic T lymphocyte precursors selectively infiltrating sarcoma virus-induced tumors, J. Exp. Med. 154: 362.

    Article  PubMed  CAS  Google Scholar 

  • Dye, E. S., and North, R. J., 1981, T cell-mediated immunosuppression as an obstacle to adoptive immunotherapy of the P815 mastocytoma and its metastases, J. Exp. Med. 154:1033.

    Google Scholar 

  • Dye, E. S., North, R. J., and Mills, C. D., 1981, Mechanisms of anti-tumor action of Corynebacterium parvum. 1. Potentiated tumor-specific immunity and its therapeutic limitations, J. Exp. Med. 154: 609.

    Article  PubMed  CAS  Google Scholar 

  • Evans, R., 1972, Macrophages in syngeneic animal tumors, Transplantation 14: 468.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Cruz, E., Gilman, S. C., and Feldman, J. D., 1982, Immunotherapy of a chemically induced sarcoma in rats: Characterization of effector T cell subset and nature of sup pression, J. Immunol. 128: 1112.

    PubMed  CAS  Google Scholar 

  • Fujimoto, S., Green, M. I., and Sehon, A. H., 1976, Regulation of immune response to tumor antigens. I. Immunosuppressor cells in tumor bearing hosts, J. Immunol. 116: 791.

    PubMed  CAS  Google Scholar 

  • Glaser, M., 1979, Regulation of specific cell-mediated cytotoxic response against SV40induced tumor associated antigens by depletion of suppressor T cells with cyclophosphamide in mice, J. Exp. Med. 149: 774.

    Article  PubMed  CAS  Google Scholar 

  • Gorelik, E., 1983, Concomitant tumor immunity, Adv. Cancer Res. 9: 71.

    Article  Google Scholar 

  • Goto, M., Mitsuoka, A., Sugiyama, M., and Kitano, M., 1981, Enhancement of delayed hypersensitivity reaction with varieties of anti-cancer drugs. A common biological phenomenon, J. Exp. Med. 154: 204.

    Article  PubMed  CAS  Google Scholar 

  • Hellström, K. E., Kant, J. A., and Tamerius, J. D., 1978, Regression and inhibition of sarcoma growth by interference with a radiosensitive T cell population, J. Exp. Med. 148: 799.

    Article  PubMed  Google Scholar 

  • Lagrange, P. H., and Thickstun, P. M., 1979, In vivo antitumor activity at various forms of delayed-type hypersensitivity in mice, J. Natl. Cancer Inst. 62: 429.

    CAS  Google Scholar 

  • Loveland, B. E., McKenzie, I. F. C., 1982, Cells mediating graft rejection in the mouse. II. The Ly phenotypes of cells producing tumor allograft rejection, Transplantation 33: 174.

    Article  PubMed  CAS  Google Scholar 

  • Loveland, B. E., Hogarth, P. M., Ceredig, R. H., and McKenzie, I. F. C.,1982, Cells mediating graft rejection in the mouse. 1. Lyt-1 cells mediate graft rejection, J. Exp. Med. 153: 1044.

    Article  Google Scholar 

  • Mills, C. D., and North, R. J., 1983, Expression of passively transferred tumor depends on generation of cytolytic T cells in recipient. Inhibition by suppressor T cells, J. Exp. Med. 157: 1448.

    Article  PubMed  CAS  Google Scholar 

  • Mills, C. D., North, R. J., and Dye, E. S., 1981, Mechanisms of anti-tumor action of Corynebacterium parvum. II. Potentiated cytolytic T cell response and its tumor-induced suppression, J. Exp. Med. 154: 621.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D. S., Nelson, M., and Hopper, K. E., 1979, Mechanisms of resistance to syngeneic methylcholanthrene-induced fibrosarcomas, Adv. Exp. Med. Biol. 121B: 541.

    Google Scholar 

  • North, R. J., 1982, Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells, J. Exp. Med. 55: 1063.

    Article  Google Scholar 

  • North, R. J., 1984, y-Irradiation facilitates the expression of adoptive immunity against established tumors by eliminating suppressor T cells, Cancer Immunol. Immunother. (in press).

    Google Scholar 

  • North R. J., and Bursuker, I., 1984, The generation and decay of the immune response to a progressive f ibrosarcoma, J. Exp. Med. (in press).

    Google Scholar 

  • North, R. J., and Kirstein, D. P., 1977, T cell-mediated concomitant immunity to syngeneic tumors. 1. Activated macrophages as the expressors of nonspecific immunity to unrelated tumors and bacterial parasites, J. Exp. Med. 145: 275.

    Article  PubMed  CAS  Google Scholar 

  • North, R. J., Dye, E. S., Mills, C. D. and Chandler, J. P., 1982, Modulation of antitumor immunity. Immunobiologic Approaches, Springer Semin. Immunopathol. 5: 193.

    Google Scholar 

  • Reinisch, C. L., and Andrew, S. L., and Schlossman, S. F., 1977, Suppressor cell regulation Adoptive T-Cell-Mediated Regression of Tumors 257 of tumor immunity: Abrogation by adult thymectomy,Proc. Natl. Acad. Sci. USA 74 (7): 2989.

    Article  CAS  Google Scholar 

  • Röllinghoff, M., Starzinski-Powitz, A., Pfizenmaier, K., and Wagner, H., 1977, Cyclophosphamide-sensitive T lymphocytes suppress in vivo generation of antigen-specific cytotoxic T lymphocytes, J. Exp. Med. 145: 455.

    Article  PubMed  Google Scholar 

  • Rosenberg, S. A., and Terry, W. D., 1977, Passive immunotherapy of cancer in animals and man, Adv. Cancer Res. 25: 323.

    Article  PubMed  CAS  Google Scholar 

  • Rotter, V., and Trainin, N., 1975, Inhibition of tumor growth in syngeneic chimeric mice mediated by a depletion of suppressor T cells, Transplantation 20: 68.

    Article  PubMed  CAS  Google Scholar 

  • Russel, S. W., and McIntosh, A. T., 1977, Macrophages isolated from regressing Moloney sarcomas are more cytotoxic than those recovered from progressing tumors, Nature 268: 69.

    Article  Google Scholar 

  • Smith, H. G., Harmell, R. P., Hanna, M. G., Zwilling, B. S., Zbar, B., and Rapp, H. J., 1977, Regression of established intradermal tumors and lymph node metastases in guinea pigs after systemic transfer of immune lymphoid cells, J. Natl. Cancer Inst. 58: 1315.

    PubMed  CAS  Google Scholar 

  • Tuttle, R. L., and North, R. J., 1975, Mechanisms of antitumor action of Corynebacterium parvum: Nonspecific tumor cell destruction at site of an immunologically mediated sensitivity reaction to C. parvum, J. Natl. Cancer Inst. 55: 1043.

    Google Scholar 

  • Zbar, B., Bernstein, I. D., Bartlett, G. L., Hanna, M. G., and Rapp, H. J., 1972, Immunotherapy of cancer: Regression of intradermal tumors and prevention of growth of lymph node metastases after intralesional injection of livingMycobacterium bovis, J. Natl. Cancer Inst. 49: 119.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

North, R.J. (1984). Models of Adoptive T-Cell-Mediated Regression of Established Tumors. In: Adams, D.O., Hanna, M.G. (eds) Macrophage Activation. Contemporary Topics in Immunobiology, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1445-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1445-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1447-0

  • Online ISBN: 978-1-4757-1445-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics