Possible Autoregulatory Functions of the Secretory Products of Mononuclear Phagocytes

  • Robert J. Bonney
  • Philip Davies
Part of the Contemporary Topics in Immunobiology book series (CTI, volume 13)

Abstract

The ability of mononuclear phagocytes to recognize, ingest, and either digest or remove through various portals of exit from the body a wide variety of infectious agents and toxic materials has been recognized since the seminal observations of Metchnikoff. Mononuclear phagocytes have specialized recognition mechanisms that facilitate these functions, which include (1) several classes of Fc receptors for immune complexes; (2) responsiveness to lymphokines, which serve to enhance their phagocytic and cidal functions; and (3) receptors for complement components, which are either chemotactic or facilitate phagocytosis. During the past decade it became clear that these activities, concerned primarily with the removal of noxious stimuli from the host environment, are accompanied by other specialized functions that have far-reaching effects on the cells and connective tissues present in the pericellular environment of the mononuclear phagocyte. One of these, the ability to present antigenic determinants of ingested materials to cells of the immune system in an immunogenic form (for review, see Rosenthal, 1980), is not discussed here. The other, the ability of mononuclear phagocytes to secrete a diverse range of products, preoccupied many investigators during the past decade.

Keywords

Alveolar Macrophage Peritoneal Macrophage Mononuclear Phagocyte Phorbol Myristate Acetate Mouse Peritoneal Macrophage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, S. K., Friend, P. S., Hoidal, J. R., and Douglas, S. D., 1978, Production of C2 by human alveolar macrophages, Immunology 35: 369–372.PubMedGoogle Scholar
  2. Alitalo, K., Hovi, T., and Vaheri, A., 1980, Fibronectin is produced by human macrophages, J. Exp. Med. 151: 602–613.PubMedCrossRefGoogle Scholar
  3. Banda, M., Clark, E. J., and Werb, Z., 1980, Limited proteolysis by macrophage elastase inactivates human a, -proteinase inhibitor, J. Med. Exp. 152: 1563–1570.CrossRefGoogle Scholar
  4. Banda, M., and Werb, Z., 1981, Mouse macrophage elastase. Purification and characterization as a metalloproteinase, Biochem. J. 193: 589–605.PubMedGoogle Scholar
  5. Bentley, C., Hadding, U., Bitter-Suermann, D., and Brade, V., 1977, Effect of in vivo stimulation of mice on the secretion of factor B of the alternative complement pathway by peritoneal macrophages, Eur. J. Immunol. 7: 188–190.PubMedCrossRefGoogle Scholar
  6. Bentley, C., Fries, W., and Brade, V., 1978, Synthesis of factors D, B and P of the alternative pathway of complement activation, as well as of C3 by guinea pig peritoneal macrophages in vitro, Immunology 35: 971–980.PubMedGoogle Scholar
  7. Bevilacqua, M. P., Amrani, D., Mossesson, M. W., and Bianco, C., 1981, Receptors for cold insoluble globulin (plasma fibronectin) on human monocytes, J. Exp. Med. 153: 42–60.PubMedCrossRefGoogle Scholar
  8. Bonney, R. J., Wightman, P. D., Davies, P., Sadowski, S., Kuehl, F. A., Jr., and Humes, J. L., 1978, Regulation of prostaglandin synthesis and of the release of lysosomal hydrolases by mouse peritoneal macrophages, Biochem. J., 176: 433–442.PubMedGoogle Scholar
  9. Bonney, R. J., Naruns, P., Davies, P., and Humes, J. L., 1979, Antigen-antibody complexes stimulate the synthesis and release of prostaglandins by mouse peritoneal macrophages, Prostaglandins 18: 605–616.PubMedCrossRefGoogle Scholar
  10. Bonney, R. J., Wightman, P. D., Dahlgren, M. E., Davies, P., Kuehl, F. A., Jr., and Humes, J. L., 1980a, Release of inflammatory mediators by macrophages in response to phorbol myristate acetate: Effect of RNA and protein synthesis inhibitors, Biochim. Biophys. Acta 633: 410–421.PubMedCrossRefGoogle Scholar
  11. Bonney, R. J., Burger, S., Kuehl, F. A., Jr., and Humes, J., 1980b, Prostaglandin E2 and prostacyclin elevate cAMP levels in elicited but not resident populations of macrophages, Adv. Prostaglandin Thromboxane Res. 8: 1691–1693.PubMedGoogle Scholar
  12. Brade, V., Hall, R. E. and Colten, H., 1977, Biosynthesis of pro-C3, a precursor of the third component of complement, J. Exp. Med. 146: 759–765.PubMedCrossRefGoogle Scholar
  13. Bradley, J. R., and Metcalf, D., 1966, The growth of mouse bone marrow cells in vitro, Aust. J. Exp. Bio. Med. Sci. 44: 287–293.CrossRefGoogle Scholar
  14. Broxmeyer, H. E., Mendelsohn, N., and Moore, M. A. S., 1977, Abnormal granulocyte feedback regulation of colony stimulating activity-producing cells from patients with chronic myelogenous leukemia, Leukemia Res. 1: 3–12.CrossRefGoogle Scholar
  15. Brune, K., Glatt, M., Kalin, H., and Peskar, H., 1978, Pharmacological control of prostoglandin and thromboxane release from macrophages, Nature 274: 261–263.PubMedCrossRefGoogle Scholar
  16. Burger, R., Hadding, U., Schorlemmer, H. U., Brade, V., and Bitter-Suerman, D., 1975, Dextran sulphate: A synthetic activator of C3 via the alternative pathway. I. Influence of molecular size and degree of sulphation on the activation potency, Immunology 29: 549–554.PubMedGoogle Scholar
  17. Chenoweth, D. E., Goodman, M. G., and Weigle, W. O., 1982, Demonstration of a specific receptor for human C5a anaphylatoxin on murine macrophages, J. Exp. Med. 156: 6878.CrossRefGoogle Scholar
  18. Chervenick, P. A., and LoBuglio, A. E., 1972, Human blood monocytes: stimulators of granulocyte and mononuclear colony formation in vitro, Science 178:164–166.PubMedCrossRefGoogle Scholar
  19. Colten, H., 1976, Biosynthesis of complement, Adv. Immunol. 22: 67–118.PubMedCrossRefGoogle Scholar
  20. Colten, H. R., and Borsos, T., 1974, Biosynthesis of the second and fourth components of complement: Inhibition in vitro by chemical carcinogens, J. Immunol. 112: 1107 1114.PubMedGoogle Scholar
  21. Dahlgren, M. E., Davies, P., and Bonney, R. J., 1980, Phorbol myristate acetate induces the secretion of an elastase by populations of resident and elicited mouse peritoneal macrophages, Biochim. Biophys. Acta 630: 338–351.PubMedCrossRefGoogle Scholar
  22. Davies, P., and Bonney, R. J., 1979, Secretory products of mononuclear phagocytes, J. Reticuloendothel. Soc. 26: 37–47.PubMedGoogle Scholar
  23. Davies, P., and Bonney, R. J., 1980, The secretion of hydrolytic enzymes by mononuclear phagocytes, in: The Cell Biology of Inflammation ( G. Weissmann, ed.), pp. 497–542, Elsevier North-Holland, New York.Google Scholar
  24. Davies, P., Bonney, R. J., Humes, J. L, and Kuehl, F. A., Jr., 1980, The synthesis of arachidonic acid oxygenation products by various mononuclear phagocyte populations, in: Mononuclear Phagocytes, Functional Aspects ( R. van Furth, ed.), pp. 1317–1350, Martinus Nijhoff, The Hague.Google Scholar
  25. Einstein, L. P., Alper, C. A., Bloch, K. J., Herin, J. T., Rosen, F. S., David, J. R., and Colten, H. R., 1975, Biosynthetic defect in monocytes from human beings with genetic deficiency of the second component of complement, N. Engl. J. Med. 292: 1169–1171.PubMedCrossRefGoogle Scholar
  26. Einstein, L. P., Schneeberger, E. E., and Colten, H. R., 1976, Synthesis of the second component of complement by long-term primary cultures of human monocytes, J. Exp. Med. 143: 114–126.PubMedCrossRefGoogle Scholar
  27. Fels, A. O. S., Pawlowski, N. A., Cramer, E. B., King, T. K. C., Cohn, Z. A., and Scott, W. A., 1982, Human alveolar macrophages produce leukotriene B4, Proc. Natl. Acad. Sci. USA 79: 7866–7870.PubMedCrossRefGoogle Scholar
  28. Feuerstein, N., Bash, J. A., Woody, J. N., and Ramwell, P. W., 1981, Leukotriene C stimulates prostaglandin release from rat peritoneal macrophages, Biochem. Biophys. Res. Commun. 100: 1085–1090.PubMedCrossRefGoogle Scholar
  29. Gallin, E. K., and Gallin, J. I., 1977, Interaction of chemotactic factors with human macrophages. Induction of transmembrane potential changes, J. Cell Biol. 75: 277–289.Google Scholar
  30. Gemsa, D., Seitz, M., Kramer, W., Till, G., and Resch, K., 1979, The effects of phagocytosis, dextran sulfate, and cell damage on PGE1 sensitivity and PGE, production of macrophages, J. Immunol. 120: 1187–1194.Google Scholar
  31. Goodman, M. G., Chenoweth, D. E., and Weigle, W. O., 1982a, Potentiation of the primary humoral immune response in vitro by C5a anaphylatoxin, J. Immunol. 129: 70–75.PubMedGoogle Scholar
  32. Goodman, M. G., Chenoweth, D. E., and Weigle, Wo. O., 1982b, Induction of interleukin 1 secretion and enhancement of humoral immunity by binding of human C5a to macrophage surface C5a receptors, J. Exp. Med. 156: 912–917.PubMedCrossRefGoogle Scholar
  33. Gordon, S., 1980, Lysozyme and plasminogen activator: Constitutive and induced secretory products of mononuclear phagocytes, in: Mononuclear Phagocytes, Functional Aspects ( R. Van Furth, ed.), pp. 1273–1298, Martinus Nijhoff, The Hague.Google Scholar
  34. Gotze, O., Bianco, C., and Cohn, Z. A., 1979, The induction of macrophage spreading by Factor B of the properdin system, J. Exp. Med. 149: 372–386.PubMedCrossRefGoogle Scholar
  35. Gudewicz, P. W., Molnar, J., Lai, M. Z., Beezhold, D. W., Siefring, Jr., G. E., Credo, R. B., and Lorand, L., 1980, Fibronectin mediated uptake of gelatin coated latex particles by peritoneal macrophages, J. Cell Biol. 87: 427–433.PubMedCrossRefGoogle Scholar
  36. Guilbert, L. J., and Stanley, E. R., 1980, Specific interaction of murine colony-stimulating factor with mononuclear phagocytic cells, J. Cell. Biol. 85: 153–159.PubMedCrossRefGoogle Scholar
  37. Hamilton, J. A., 1981, Regulation of prostaglandin and plasminogen activator production by mouse peritoneal macrophages, J. Reticuloendothel. Soc. 30: 115–128.PubMedGoogle Scholar
  38. Hibbs, J. R., Lambert, L. H., and Remington, J. S., 1971, Resistance to murine tumors conferred by chronic infection with intracellular protozoa, Toxoplasma gondii and Resonitia jellisoni, J. Infect. Dis 124: 587–591.PubMedCrossRefGoogle Scholar
  39. Hovi, T., Mosher, D., and Vaheri, A., 1977, Cultured human monocytes synthesize and secrete a2-macroglobulin, J. Exp. Med. 145: 1580–1589.PubMedCrossRefGoogle Scholar
  40. Hsueh, W., and Sun, F. F., 1982, Leukotriene by biosynthesis by alveolar macrophages, Bioch. Biophys. Res. Commun. 106: 1085–1091.CrossRefGoogle Scholar
  41. Humes, J. L., Bonney, R. J., Pelus, L., Dahlgren, M. E., Sadowski, S. J., Kuehl, F. A., Jr., and Davies, P., 1977, Macrophages synthesize and release prostaglandins in response to inflammatory stimuli, Nature 269: 149–151.PubMedCrossRefGoogle Scholar
  42. Humes, J. L., Sadowski, S., Galavage, M., Kuehl, F. A., Jr., Wightman, P. D., Dahlgren, M. E., Davies, P., and Bonney, R. J., 1980, The diminished production of arachidonic acid oxygenation products by elicited peritoneal macrophages: Possible mechanisms, J. Immunol. 124: 2110–2116.PubMedGoogle Scholar
  43. Humes, J. L., Sadowski, S., Galavage, M., Goldenberg, M., Subers, E., Bonney, R. J., and Kuehl, F. A., Jr., 1982, Evidence for two sources of arachidonic acid for oxidative metabolism by mouse peritoneal macrophages, J. Biol. Chem. 257: 1591–1594.PubMedGoogle Scholar
  44. Johansson, S., Rubin, K., Hook, M., Ahigren, T., and Seljelid, D. R., 1979, In vitro biosynthesis of cold insoluble gloublin (fibronectin) by mouse peritoneal macrophages, FEBS Lett. 105: 313–316.Google Scholar
  45. Johnson, W. J., Pizzo, S. V., Imber, M. J., and Adams, D. O., 1982, Receptors for maleylated proteins regulate secretion of neutral proteases by murine macrophages, Science 218: 574–576.PubMedCrossRefGoogle Scholar
  46. Kaplan, J, 1980, Evidence for reutilization of surface receptors for a-macroglobulin protease complexes in rabbit alveolar macrophages, Cell 19: 197–205.PubMedCrossRefGoogle Scholar
  47. Kaplan, J., and Nielsen, M. L., 1979a, Analysis of macrophage surface receptors. 1. Binding of a-macroglobulin-protease complexes to rabbit alveolar macrophages, J. Biol. Chem. 254: 7323–7328.PubMedGoogle Scholar
  48. Kaplan, J. and Nielsen, M. L., 1979b, Analysis of macrophage surface receptors. II. Internalization of a-macroglobulin-trypsin complexes by rabbit alveolar macrophages, J. Biol. Chem. 254: 7329–7335.PubMedGoogle Scholar
  49. Kurland, J. J., and Bockman, R., 1978, Prostaglandin E production by human blood monocytes and mouse peritoneal macrophages, J. Exp. Med. 147: 952–957.Google Scholar
  50. Kurland, J. I., Pelus, L. M., Ralph, P., Bockman, R. S., and Moore, M. A. S., 1979, Induction of prostaglandin E synthesis in normal and neoplastic macrophages: Role for colony-stimulating factor(s) distinct from effects on myeloid progenitor cell proliferation, Proc. Natl. Acad. Sci. USA 76: 2326–2330.PubMedCrossRefGoogle Scholar
  51. Lai A Fat, R. F. M., and Van Furth, R., 1975, In vitro synthesis of some complement components (Clq, C3 and C4) by lymphoid tissues and circulating leucocytes in man, Immunology 28: 359–368.Google Scholar
  52. Lappin, D., and Whaley, K., 1981, Cyclic AMP-mediated modulation of the production of the second component of human complement by monocytes, Int. Arch. Allergy A p pl. Immunol. 65: 85–90.PubMedCrossRefGoogle Scholar
  53. Lappin, D. F., and Whaley, K., 1982, Prostaglandins and prostaglandin synthetase inhibitors regulate the synthesis of complement components by human monocytes, Clin. Exp. Immunol. 49: 623–630.PubMedGoogle Scholar
  54. Littleton, C., Kessler, D., and Burkholder, T. M., 1970, Cellular basis for the synthesis of the fourth component of guinea pig complement as determined by a hemolytic plaque technique, Immunology 18: 693–704.PubMedGoogle Scholar
  55. Littman, B. H., and Ruddy, S., 1977, Production of the second component of complement by human monocytes: Stimulation by antigen-activated lymphocytes or lymphokines, J. Exp. Med. 145: 1344–1352.PubMedCrossRefGoogle Scholar
  56. McCarthy, K., and Henson, P. M., 1979, Induction of lysosomal enzyme secretion by alveolar macrophages in response to purified complement fragments C5a and CSades arg’ J. Immunol. 123: 2511–2517.PubMedGoogle Scholar
  57. McCarthy, M. E., and Zwilling, B. S., 1981, Differential effects of prostaglandins on antitumor activity of normal and BCG-activated cells, Immunology 60: 91–99.Google Scholar
  58. McClelland, D. B. L., and Van Furth, R., 1976, In vitro synthesis of ß1C/131A globulin (the C3 component of complement) by tissues and leucocytes of mice, Immunology 31: 855–861.Google Scholar
  59. Mencia-Huerta, J-M, and Benveniste, J., 1979, Platelet-activating factor and macrophages I. Evidence for the release from rat and mouse peritoneal macrophages and not from mastocytes, Eur. J. Immunol. 9: 409–415.PubMedCrossRefGoogle Scholar
  60. Mencia-Huerta, J-M., Roubin, R., Morgot, J-L, and Benveniste, J., 1982, Biosynthesis of platelet-activating factor, III. Formation of PAF-acether synthetic substrates by stimulated murine macrophages, J. Immunol. 129: 804–808.PubMedGoogle Scholar
  61. Mosher, D. F., Saksela, O., Keski-Oja, J., and Vaheri, A., 1977, Distribution of a major surface-associated glycoprotein, fibronectin, in cultures of adherent cell, J. Supramol. Struct. 6. 551–557.PubMedCrossRefGoogle Scholar
  62. Mueller, W., Anausje-Abel, M., and Loos, M., 1978, Biosynthesis of the first component of complement by human and guinea pig peritoneal macrophages: Evidence for independent production of Cl subunits, J. Immunol. 121: 1578–1584.Google Scholar
  63. Murray, J. L., 1982, Prostaglandin E2 modulation of human monocyte antibody-dependent cell-mediated cytotoxicity against human red cells, Cell Immunol. 71:196–201.PubMedCrossRefGoogle Scholar
  64. Nathan, C. F., Murray, H. U., and Cohn, Z. A., 1982, The macrophage as an effector cell, N. Engl. J. Med. 303: 622–626.CrossRefGoogle Scholar
  65. Norris, D. A., Clark, R. A. F., Swigart, L. M., Huff, J. C., Weston, W. M., and Howell, S. E., 1982, Fibronectin fragment(s) are chemotactic for human peripheral blood monocytes, J. Immunol. 129: 1612–1618.PubMedGoogle Scholar
  66. North, R. J., Kirstein, D. P., and Remington, J. S., 1976, Subversion of host defense mechanisms by murine tumors. I. A circulating factor that suppresses macrophage-mediated resistance to infection, J. Exp. Med 143: 559–573.PubMedCrossRefGoogle Scholar
  67. Ooi, Y. M., and Colten, H. M., 1979, Genetic defect in secretion of complement CS in mice, Nature 282: 207–208.PubMedCrossRefGoogle Scholar
  68. Oropeza-Rendon, R. L., Speth, V., Heller, G., Weber, K., and Fisher, H., 1979, Prostaglandin E1 reversibly induces morphological changes in macrophages and inhibits phagocytosis, Exp. Cell Res. 119: 365–371.PubMedCrossRefGoogle Scholar
  69. Pelus, L. M., Broxmeyer, H. E., Kurland, J. I., and Moore, M. A. S., 1979, Regulation of macrophage and granulocyte proliferation, J. Exp. Med. 150: 277–292.PubMedCrossRefGoogle Scholar
  70. Pelus, L. M., Broxmeyer, H. E., Clarkson, B. D., and Moore, M. A. S., 1980, Abnormal responsiveness of granulocyte-macrophage committed colony forming cells from patients with chronic myeloid leukemia to inhibition by prostaglandin E, Cancer Res. 40: 2512–2515.PubMedGoogle Scholar
  71. Picker, L. J., Raff, H. V., Goldyne, M. E., and Stobo, J. D., 1980, Metabolic heterogenity among human monocytes and its modulation by PGE2, J. Immunol. 124: 2557–2562.PubMedGoogle Scholar
  72. Postlethwaite, A. E., Keski-Oja, J., Balian, G., and Kang, A. H., 1981, Induction of fibroblast chemotaxis by fibronectin. Localization of the chemotactic region to a 140,000-molecular weight non-gelatin-binding fragment, J. Exp. Med. 153: 494–499.PubMedCrossRefGoogle Scholar
  73. Rennard, S. I., Berg, R., Martin, G. R., Foidart, J. M., and Gehron-Robey, P., 1980, Ensyme-linked immunoassay (ELISA) for connective tissue components, Anal. Biochem. 104: 205–214.PubMedCrossRefGoogle Scholar
  74. Rennard, S. I., Hunninghake, G. W., Bitterman, P. B., and Crystal, R. G., 1981, Production of fibronectin by the human alveolar macrophage: Mechanism for the recruitment of fibroblasts to sites of tissue injury in interstitial lung diseases, Proc. Natl. Acad. Sci. USA 78: 7147–7151.PubMedCrossRefGoogle Scholar
  75. Rosenthal, A. S., 1980, Regulation of the immune response-role of the macrophage, N. Engl. J. Med. 303: 1153–1156.PubMedCrossRefGoogle Scholar
  76. Rouzer, C. M., Scott, W. A., Conn, Z. A., Blackburn, P., and Manning, J., 1980, Mouse peritoneal macrophages release leukotriene C in response to a phagocytic stimulus, Proc. Natl. Acad. Sci. USA 77: 4928–4932.PubMedCrossRefGoogle Scholar
  77. Rouzer, C. M., Scott, W. A., Hamill, A. L., and Cohn, Z. A., 1982, Synthesis of leukotrienes and other arachidonic acid metabolites by mouse peritoneal macrophages, J. Exp. Med. 155: 720–733.PubMedCrossRefGoogle Scholar
  78. Ruoslahti, E., Pierschbacher, M., Hayman, E. G., and Engvalle, E., 1982, Fibronectin: A molecule with remarkable structural and functional diversity, Trends Biochem. Sci. 7: 188–190.CrossRefGoogle Scholar
  79. Rutherford, B., and Schenken, H. A., 1983, C3 cleavage products stimulate release of prostaglandins by human mononuclear phagocytes in vitro, J. Immunol. 130: 874–877.PubMedGoogle Scholar
  80. Schenkelaars, E. J., and Bonta, I. L., 1983, Effect of leukotriene C4 on the release of secretory products by elicited populations of rat peritoneal macrophages, Eur. J. Pharmacol. 86: 477–480.PubMedCrossRefGoogle Scholar
  81. Scher, M. G., Beller, D. I., and Unanue, E. R., 1980, Demonstration of a soluble mediator that induces exudates rich in Ia-positive macrophages, J. Exp. Med. 152: 1684–1693.PubMedCrossRefGoogle Scholar
  82. Schnyder, J., Dewald, B., and Baggiolini, M., 1981, Effects of cyclooxygenase inhibitors and prostaglandin E2 on macrophage activation in vitro, Prostaglandins 22: 411–421.PubMedCrossRefGoogle Scholar
  83. Schorlemmer, H. U., and Allison, A. C., 1976, Effects of activated complement components on enzyme secretion by macrophages, Immunology 31: 181–186.Google Scholar
  84. Schorlemmer, H. U. Davies, P., and Allison, A. C., 1976, Ability of activated complement components to induce lysosomal enzyme release from macrophages, Nature 261: 48–49.PubMedCrossRefGoogle Scholar
  85. Schorlemmer, H. U., Bitter-Suerman, D., and Allison, A. C., 1977, Complement activation by the alternative pathway and macrophage enzyme secretion in the pathogenesis of chronic inflammation, Immunology 32: 929–940.PubMedGoogle Scholar
  86. Schultz, R. M., Pavlidis, N. A., Styles, W. A., and Chirigos, M. A., 1978; Regulation of macrophage tumorcidal function: A role for prostaglandins of the E series, Science 202: 320–321.Google Scholar
  87. Scott, W. A., Rouzer, C. A., and Cohn, Z. A., 1983, Leukotriene C release by macrophages, Fed. Proc. 42: 129–133.PubMedGoogle Scholar
  88. Smith, R. L., Hunt, N. H., Merritt, J. E., Evans, T., and Weidemann, M. J., 1980, Cyclic nucleotide metabolism and reactive oxygen production by macrophages, Biochem. Biophys. Res. Commun. 96: 1079–1087.PubMedCrossRefGoogle Scholar
  89. Snyder, D. S., Lu, C. Y., and Unanue, E. R., 1982a, Control of macrophage Ia expression in neonatal mice role of a splenic suppressor cell, J. Immunol. 128: 1458–1465.PubMedGoogle Scholar
  90. Snyder, D. S., Beller, D. I., and Unanue, E. R., 1982b, Prostaglandins modulate macrophage Ia expression, Nature 299: 163–165.PubMedCrossRefGoogle Scholar
  91. Stecher, V., 1970, Synthesis of proteins by mononuclear phagocytes, in: Mononuclear Phagocytes ( R. Van Furth, ed.), pp. 133–150, F. A. Davis, Philadelphia.Google Scholar
  92. Steeg, P. S., Johnson, H. M., and Oppenheim, J. J., 1982, Regulation of murine macrophage la antigen expression by an immune interferon-like lymphokine: Effect of endotoxin, J. Immunol. 129: 2402–2406.PubMedGoogle Scholar
  93. Taffet, S. M., and Russell, S. W., 1980, Macrophage mediated tumor cell killing: Regulation of expression of cytolytic activity by prostaglandin E., J. Immunol. 126: 424–427.Google Scholar
  94. Taffet, S. M., Eurell, T. E., and Russell, S. W., 1982, Regulation of macrophage-mediated tumor cell killing by prostagladins: comparison of PGE2 and PGI2, Prostaglandins 24: 763–774.PubMedCrossRefGoogle Scholar
  95. Tushinski, R. J., Oliver, I. T., Guilbert, L. J., Tyhan, P. W., Warner, J. R., and Stanley, E. R., 1982, Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy, Cell 28: 71–81.PubMedCrossRefGoogle Scholar
  96. Van Furth, R., Kramps, J. A., and Diesselhoff-Den Dulk, M. M. C., 1983, Synthesis of a -antitrypsin by human monocytes, Clin. Exp. Immunol. 51: 551–557.PubMedGoogle Scholar
  97. Vassalli, J-D., Hamilton, J., and Reich, E., 1977, Macrophage plasminogen activator: Induction by concanavalin A and phorbol myristate acetate, Cell 11: 695–705.PubMedCrossRefGoogle Scholar
  98. Villiger, B., Kelley, D. G., Engleman, W., Kuhn, C. III, and McDonald, J. A., 1981, Human alveolar macrophage fibronectin: Synthesis, secretion, and ultrastructural localization during gelatin-coated latex particle binding, J. Cell. Biol. 90: 711–720.PubMedCrossRefGoogle Scholar
  99. Wahl, L. M., Olsen, C. E., Sandberg, A. L., and Mergenhagen, S. E., 1977, Prostaglandin regulation of macrophage collagenase production, Proc. Natl. Acad. Sci. USA 74: 4955–4958.PubMedCrossRefGoogle Scholar
  100. Whaley, K., 1980, Biosynthesis of the complement components and the regulatory proteins of the alternative complement pathway by human peripheral blood monocytes, J. Exp. Med. 151: 501–516.PubMedCrossRefGoogle Scholar
  101. White, R., Janoff, A., and Godfrey, H. P., 1980, Secretion of alpha-2-macroglobulin by human alveolar macrophages, Lung 158: 9–14.PubMedCrossRefGoogle Scholar
  102. White, R., Leed, D., Habicht, G. S., and Janoff, A., 198la, Secretion of alpha, -proteinase inhibitor by cultured rat alveolar macrophages, Am. Rev. Respir. Dis. 123: 447–449.Google Scholar
  103. White, R., Habicht, G., S., Godfrey, H. P., Janoff, A., Barton, E., and Fox, C., 1981b, Secretion of elastase and alpha-2-macroglobulin by cultured murine peritoneal macrophages: studies on their interaction, J. Lab. Clin. Med. 97: 718–729.PubMedGoogle Scholar
  104. Wyatt, H. V., Colten, H. R., and Borsos, T., 1972, Production of the second and fourth components of guinea pig complement by single peritoneal cells: Evidence that one cell may produce both components, J. Immunol. 108: 1609–1614PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Robert J. Bonney
    • 1
  • Philip Davies
    • 1
  1. 1.Department Immunology and InflammationMerck Sharp & Dohme Research LaboratoriesRahwayUSA

Personalised recommendations