Analysis of Macrophage Differentiation and Function with Monoclonal Antibodies

  • Timothy A. Springer
  • Jay C. Unkeless
Part of the Contemporary Topics in Immunobiology book series (CTI, volume 13)


A large number of anti-mouse and anti-human macrophage/monocyte monoclonal antibodies (MAb) have recently been obtained that are proving invaluable reagents of extraordinary specificity for the study of macrophage differentiation, function, and surface antigen structure. This chapter summarizes information on such MAb reported up to February 1983 in tabular form, and then concentrates in more detail on antigens characterized by the authors and their collaborators.


West Nile Virus Mouse Macrophage Macrophage Cell Line Complement Receptor Macrophage Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, C. L., 1982, Isolation of the receptor for IgG from a human monocyte cell line (U937) and from human peripheral blood monocytes, J. Exp. Med. 156: 1794–1805.PubMedCrossRefGoogle Scholar
  2. Anderson, C. L., and Abraham, G. N., 1980, Characterization of the Ic receptor for IgG on a human macrophage cell line, U937, J. Immunol. 125: 2735–2741.PubMedGoogle Scholar
  3. Ault, K. A., and Springer, T. A., 1981, Cross reaction of a rat-anti-mouse phagocyte-specific monoclonal antibody (anti-Mac-1) with human monocytes and natural killer cells, J. Immunol. 126: 359–364.PubMedGoogle Scholar
  4. Austyn, J. M., and Gordon, S., 1981, F4/80, a monoclonal antibody directed specifically against the mouse macrophage, Eur. J. Immunol. 11: 805–815.PubMedCrossRefGoogle Scholar
  5. Ball, E. D., Graziano, R. F., Shen, L., and Fanger, M. W., 1982, Monoclonal antibodies to novel myeloid antigens reveal human neutrophil heterogeneity, Proc. Natl. Acad. Sci. USA 79: 5374–5378.PubMedCrossRefGoogle Scholar
  6. Basch, R. S., and Berman, J. W., 1982, Thy-1 determinants are present on many murine hematopoietic cells other than T cells, Eur. J. Immunol. 12: 359–364.PubMedCrossRefGoogle Scholar
  7. Becker, G. J., Hancock, W. W., Kraft, N., Lanyon, H. C., and Atkins, R. C., 1981, Monoclonal antibodies to human macrophage and leucocyte common antigens, Pathology 13: 669–680.PubMedCrossRefGoogle Scholar
  8. Beller, D. I., Kiely, J. M., and Unanue, E. R., 1980, Regulation of macrophage populations. I. Preferential induction of la-rich peritoneal exudates by immunologic stimuli, J. Immunol. 124: 1426–1432.PubMedGoogle Scholar
  9. Beller, D. I., Springer, T. A., and Schreiber, R. D., 1982, Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor, J. Exp. Med. 156: 1000–1009.PubMedCrossRefGoogle Scholar
  10. Berken, A., and Benacerraf, B., 1966, Properties of antibodies cytophilic for macrophages, J. Exp. Med. 123: 119–144.PubMedCrossRefGoogle Scholar
  11. Berman, B., and Gigli, I., 1980, Complement receptors on guinea pig epidermal Langerhans cells, J. Immunol. 124: 685–690.PubMedGoogle Scholar
  12. Bernstein, I. D., Andrews, R. G., Cohen, S. F., and McMaster, B. E., 1982, Normal and malignant human myelocytic and monocytic cells identified by monoclonal antibodies, J. Immunol. 128: 876–881.PubMedGoogle Scholar
  13. Bianco, C., and Nussenzweig, V., 1977, Complement receptors, Contemp. Top. Mol. Immunol. 6: 145–176.PubMedCrossRefGoogle Scholar
  14. Boltz-Nitulescu, G., Bazin, H., and Spiegelberg, H. L., 1981, Specificity of Fc receptors for IgG2a, IgGI/IgG2b, and IgE on rat macrophages, J. Exp. Med. 154: 374–384.PubMedCrossRefGoogle Scholar
  15. Breard, J., Reinherz, E. L., Kung, P. C., Goldstein, G.,’ and Schlossman, S. F., 1980, A monoclonal antibody reactive with human peripheral blood monocytes, J. Immunol. 124: 1943–1948.Google Scholar
  16. Breard, J., Reinherz, E., O’Brien, C., and Schlossman, S. F., 1981, Delineation of an effector population responsible for natural killing and antibody-dependent cellular cytotoxicity in man, Clin. Immunol Immunopathol. 18: 145–150.PubMedCrossRefGoogle Scholar
  17. Brooks, C. G., Kuribayashi, K., Sale, G. E., and Henney, C. S., 1982, Characterization of five cloned murine cell lines showing high cytolytic activity against YAC-1 cells, J. Immunol. 128: 2326–2335.PubMedGoogle Scholar
  18. Burckhardt, J. J., Anderson, W. H. K., Kearney, J. F., and Cooper, M. D., 1982, Human blood monocytes and platelets share a cell surface component, Blood 60: 767–771.PubMedGoogle Scholar
  19. Burke, K., and Gigli, I., 1980, Receptors for complement on Langerhans cells, J. Invest.Dermatol. 75: 46–51.PubMedCrossRefGoogle Scholar
  20. Carlo, J. R., Ruddy, S., Studer, E. J., and Conrad, D. H., 1979, Complement receptor binding of C3b-coated cells treated with C3b inactivator 0–1H globulin and tyrpsin, J. Immunol. 123: 523–528.PubMedGoogle Scholar
  21. Collins, S. J., Ruscetti, F. W., Gallagher, R. E., and Gallo, R. C., 1978, Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds, Proc. Natl. Acad. Sci. USA 75: 2458–2462.PubMedCrossRefGoogle Scholar
  22. Crabtree, G. R., 1980, Fc receptors of a human promyelocytic leukemic cell line: Evidence for two types of receptors defined by binding of the staphylococcal protein A-IgGI complex, J. Immunol. 127: 448–453.Google Scholar
  23. Davignon, D., Martz, E., Reynolds, T., Kürzinger, K., and Springer, T. A., 1981, Monoclonal antibody to a novel lymphocyte function-associated antigen (LFA-1): Mechanism of blocking of T lymphocyte-mediated killing and effects on other T and B lymphocyte functions, J. Immunol. 126: 590–595.Google Scholar
  24. Diamond, B., and Scharff, M. D., 1980, IgGI and IgG2b share the Fc receptor on mouse macrophages, J. Immunol. 125: 631–633.PubMedGoogle Scholar
  25. Diamond, B., and Yelton, D. E., 1981, A new Fc receptor on mouse macrophages binding IgG3, J. Exp. Med. 153: 514–519.PubMedCrossRefGoogle Scholar
  26. Dickler, H. B., 1976, Lymphocyte receptors for imrnunoglobulin, in: Advances in Immunology, Vol. 24 ( F. J. Dixon, and H. G. Kunkel, eds.), pp. 167–214, Academic Press, New York.Google Scholar
  27. Dimitriu-Bona, A., Burmester, G. R., Waters, S. J., and Winchester, R. J., 1983, Human mononuclear phagocyte differentiation antigens. 1. Patterns of antigenic expression on the surface of human monocytes and macrophages defined by monoclonal antibodies, J. Immunol. 130: 145–152.PubMedGoogle Scholar
  28. Ezekowitz, R. A. B., Austyn, J., Stahl, P. D., and Gordon, S., 1981, Surface properties of bacillus Calmette-Guérin-activated mouse macrophages. Reduced expression of mannose-specific endocytosis, Fc receptors, and antigen F4/80 accompanies induction of Ia, J. Exp. Med. 154: 60–76.PubMedCrossRefGoogle Scholar
  29. Ezekowitz, R. A. B., Bampton, M., and Gordon, S., 1983, Macrophage activation selectively enhances expression of Fc receptors for IgG2a, J. Exp. Med. 157: 807–812.PubMedCrossRefGoogle Scholar
  30. Fearon, D. T., and Wong, W. W., 1983, Complement ligand-receptor interactions that mediate biological responses, Annu. Rev. Immunol. 1: 243–271.PubMedCrossRefGoogle Scholar
  31. Ferrero, D., Pessano, S., Pagliardi, G. L., and Rovera, G., 1983, Induction of differentiation of human myeloid leukemias: Surface changes probed with monoclonal antibodies, Blood 61: 171–179.PubMedGoogle Scholar
  32. Fithian, E., Kung, P., Goldstein, G., Rubenfeld, M. Fenoglio, C., and Edelson, R., 1981, Reactivity of Langerhans cells with hybridoma antibody, Proc. Natl. Acad. Sci. USA 78: 2541–2544.CrossRefGoogle Scholar
  33. Fleit, H. B., Wright, S. D., and Unkeless, J. C., 1982, Human neutrophil Fc-gamma receptor distribution and structure, Proc. Natl. Acad. Sci. USA 79: 3275–3279.PubMedCrossRefGoogle Scholar
  34. Fleit, H. B., Wright, S. D., Dune, C. J., Valinsky, J. E., and Unkeless, J. C., 1984, Ontogeny of Fc receptors and complement receptors (CR3) during human myeloid differentiation, J. Clin. Invest. (in press).Google Scholar
  35. Flotte, T., Springer, T. A., and Thorbecke, G. J. 1983a, Dendritic cell and macrophage staining by monoclonal antibodies in tissue sections and epidermal sheets, Am J. Patho1. 111: 112–124.Google Scholar
  36. Flotte, T. J., Haines, K. A., Peckman, K., Springer, T. A., Gigli, I., and Thorbecke, J., 1984, The relation of Langerhans cells to other dendritic cells and macrophages, In Mononuclear Phagocyte Biology (A. Volkman, ed.), Academic Press, New York (in press).Google Scholar
  37. Frank, M. M., Lawley, T. J., Hamburger, M. I., and Brown, E. J., 1983, Immunoglobulin G Fc receptor-mediated clearance in autoimmune diseases, Ann. Intern. Med. 98: 206218.Google Scholar
  38. Germain, R. N., Bhattacharya, A., Dorf, M. E., and Springer, T. A., 1982, A single monoclonal anti-Ia antibody inhibits antigen-specific T cell proliferation controlled by distinct Ir genes mapping in different H-2 I subregions, J. Immunol. 128: 1409–1413.PubMedGoogle Scholar
  39. Griffin, J. D., Ritz, J., Nadler, L. M., and Schlossman, S. F., 1981, Expression of myeloid differentiation antigens on normal and malignant myeloid cells, J. Clin. Invest. 69: 932–941.CrossRefGoogle Scholar
  40. Griffin, J. D., Beveridge, R. P., and Schlossman, S. F., 1982, Isolation of myeloid progenitor cells from peripheral blood of chronic myelogenous leukemia patients, Blood 60: 30–37.PubMedGoogle Scholar
  41. Haeffner-Cavaillon, N., Klein, M., and Dorrington, K. J., 1979, Studies on the Fc gamma receptor of the murine macrophage-like cell line P388D1 1. The binding of homologous and heterologous immunoglobulin G, J. Immunol. 123: 1905–1913.PubMedGoogle Scholar
  42. Haines, K. A., Flotte, T. J., Springer, T. A., Gigli, I., and Thorbecke, G. J., 1983, Staining of Langerhans cells with monoclonal antibodies to macrophages and lymphoid cells, Proc. Natl. Acad. Sci. USA 80: 3448–3451.PubMedCrossRefGoogle Scholar
  43. Hanjan, S. N. S., Kearney, J. F., and Cooper, M. D., 1982, A monoclonal antibody (MMA) that identifies a differentiation antigen on human myelomonocytic cells, Clin. Immunol. Im munopa thol. 23: 172–188.CrossRefGoogle Scholar
  44. Haynes, B. F., Hemler, M. E., Mann, D. L., Eisenbarth, G. S., Shelhamer, J., Mostowski, H. S., Thomas, C. A., Strominger, J. L., and Fauci, A. S., 1981, Characterization of a monoclonal antibody (4F2) that binds to human monocytes and to a subset of activated lymphocytes, J. Immunol. 126: 1409–1414.PubMedGoogle Scholar
  45. Hercend, T., Reinherz, E. L., Meuer, S., Schlossman, S. F., and Ritz, J., 1983, Phenotypic and functional heterogeneity of human cloned natural killer cell lines, Nature 301:158-160.Google Scholar
  46. Hirsch, S., Austyn, J. M., and Gordon, S., 1981, Expression of the macrophage-specific antigen F4/80 during differentiation of mouse bone marrow cells in culture, J. Exp. Med. 154: 713–725.PubMedCrossRefGoogle Scholar
  47. Ho, M. K., and Springer, T. A., 1983a, Tissue distribution, structural characterization specific antigen defined by monoclonal antibody, J. Immunol. 128: 1221–1228.Google Scholar
  48. Ho, M. K., and Springer, T. A., 1982b, Mac-1 antigen: Quantitative expression in macrophage populations and tissues, and immunofluorescent localization in spleen, J. Immunol. 128: 2281–2286.PubMedGoogle Scholar
  49. Ho, M. K., and Springer, T. A., 1983a, Tissue of distribution, structural characterization and biosynthesis of Mac-3, a macrophage surface glycoprotein exhibiting molecular weight heterogeneity, J. Biol. Chem. 258: 636–642.PubMedGoogle Scholar
  50. Ho, M. K., and Springer, T. A. 19836, Biosynthesis and assembly of the alpha and beta subunits of Mac-1, a macrophage glycoprotein associated with complement receptor function, J. Biol. Chem. 258: 2766–2769.Google Scholar
  51. Hoffman-Fezer, G., Gotze, D., Rodt, H., and Thierfelder, S., 1978, Immunohistochemical localization of xenogeneic antibodies against Iak lymphocytes on B cells and reticular cells, Immunogenetics 6: 367–375.CrossRefGoogle Scholar
  52. Hogg, N., 1983, Human monocytes are associated with the formation of fibrin, J. Exp. Med. 157: 473–485.PubMedCrossRefGoogle Scholar
  53. Holmberg, L. A., Springer, T. A., and Ault, K. A., 1981, Natural killer activity in the peritoneal exudates of mice infected with Listeria monocytogenes: Characterization of the natural killer cells by using a monoclonal rat anti-murine macrophage antibody (M1/70), J. Immunol. 127: 1792–1799.PubMedGoogle Scholar
  54. Huber, H., Douglas, S. D., and Fudenberg, H. H., 1969, The IgG receptor: An immunological marker for the characterization of mononuclear cells, Immunology 17: 7–21.PubMedGoogle Scholar
  55. Humphrey, J. H., and Grennan, D., 1984, Isolation and properties of spleen follicular dendritic cells, Adv. Exp. Med.,(in press).Google Scholar
  56. Johnson, G. D., and Nogueira Araujo, G. M., 1981, A simple method of reducing the fading of immunofluorescence during microscopy, J. Immunol. Methods 43: 349–350.PubMedCrossRefGoogle Scholar
  57. Jones, P. P., Murphy, D. B., Hewgill, D., and McDevitt, H. O., 1979, Detection of a common polypeptide chain in I-A and I-E subregion immunoprecipitates, Molec. Immunol. 16: 51–60.CrossRefGoogle Scholar
  58. Kaplan, G., and Gaudernack, G., 1982, In vitro differentiation of human monocytes. Differences in monocyte phenotypes induced by cultivation on glass or on collagen, J. Exp. Med. 156: 1101–1114.PubMedGoogle Scholar
  59. Katz, H. R., LeBlanc, P. A., and Russell, S. W., 1981, An antigenic determinant shared by mononuclear phagocytes and mast cells, as defined by monoclonal antibody, J. Reticuloendothel. Soc. 30: 439–443.PubMedGoogle Scholar
  60. Kiessling, R., Hochman, P. S., Haller, O., Shearer, G. M., Wigzell, H., and Cudkowicz, G., 1977, Evidence for a similar or common mechanism for natural killer cell activity and resistance to hemopoietic grafts, Eur. J. Immunol. 7: 655–663.PubMedCrossRefGoogle Scholar
  61. Krensky, A. M., Ault, K. A., Reiss, C. S., Strominger, J. L., and Burakoff, S. J., 1982, Generation of long-term human cytolytic cell lines with persistent natural killer activity, J. Immunol. 129: 1748–1751.PubMedGoogle Scholar
  62. Kulcyzycki, A., Jr., Solanki, L., and Cohen, L., 1981, Isolation and partial characterization of Fc gamma-binding proteins of human leukocytes, J. Clin. Invest. 68: 1158–1165.CrossRefGoogle Scholar
  63. Kurlander, R. J., and Batker, J., 1982, The binding of human immunoglobulin Gl monomer and small, covalently cross-linked polymers of immunoglobulin G1 to human peripheral blood monocytes and polymorphonuclear leukocytes, J. Clin. Invest. 69: 1–8.PubMedCrossRefGoogle Scholar
  64. Kürzinger, K., and Springer, T. A., 1982, Purification and structural characterization of LFA-1, a lymphocyte function-associated antigen, and Mac-1, a related macrophage differentiation antigen, J. Biol. Chem. 257: 12412–12418.PubMedGoogle Scholar
  65. Kürzinger, K., Reynolds, T., Germain, R. N., Davignon, D., Martz, E., and Springer, T. A., 1981, A novel lymphocyte function-associated antigen (LFA-1): Cellular distribution, quantitative expression, and structure, J. Immunol. 127: 596–602.PubMedGoogle Scholar
  66. Kürzinger, K., Ho, M. K., and Springer, T. A., 1982, Structural homology of a macrophage differentiation antigen and an antigen involved in T-cell mediated killing, Nature 296: 668–670.PubMedCrossRefGoogle Scholar
  67. Ladman, A. J., Padykula, H. A., and Strauss, E. W., 1963, A morphological study of fat transport in the normal human jejunum, Am. J. Anat. 112: 389–394.PubMedCrossRefGoogle Scholar
  68. Lamers, M. C., Heckford, S. E., and Dickler, H. B., 1982, Monoclonal anti-Fc IgG receptor antibodies trigger B lymphocyte function, Nature 298: 178–180.PubMedCrossRefGoogle Scholar
  69. Lane, B. C., and Cooper, S. M., 1982, Fc receptors of mouse cell lines. 1. Distinct proteins mediate the IgG subclass-specific Fc binding activities of macrophages, J. Immunol. 128: 1819–1824.PubMedGoogle Scholar
  70. Lay, W. H., and Nussenzweig, V., 1968, Receptors for complement on leukocytes, J. Exp. Med. 128: 991–1009.PubMedCrossRefGoogle Scholar
  71. Leblanc, P. A., Katz, H. R., and Russell, S. W., 1980, A discrete population of mononuclear phagocytes detected by monoclonal antibody, Infect. Immun. 8: 520–525.Google Scholar
  72. Letvin, N. L., Todd, R. F. III, Palley, L. S., Schlossman, S. F., and Griffin, J. D., 1983, Con- servation of myeloid surface antigens on primate granulocytes, Blood 61: 408–410.PubMedGoogle Scholar
  73. Lichtshtein, D., Kaback, H. R., and Blume, A. J., 1979, Use of a lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspension, Proc. Natl. Acad. Sci. USA 76: 650–654.PubMedCrossRefGoogle Scholar
  74. Linker-Israeli, M., Billing, R. J., Foon, K. A., and Terasaki, P. I., 1981, Monoclonal anti- bodies reactive with acute myelogenous leukemia cells, J. Immunol. 127: 2473–2477.PubMedGoogle Scholar
  75. Lohmeyer, J., Rieber, P., Feucht, H., Johnson, J., Hadam, M., and Riethmüller, G., 1981, A subset of human natural killer cells isolated and characterized by monoclonal antibodies, Eur. J. Immunol. 11: 997–1001.PubMedCrossRefGoogle Scholar
  76. Loube, S. R., McNabb, T. C., and Dorrington, K. J., 1978, Isolation of an Fc gamma-binding proteins from detergent lysates and spent culture fluid of a macrophage-like cell line (P388D,), J. Immunol. 125: 970–975.Google Scholar
  77. Loube, S. R., McNabb, T. C., and Dorrington, K. J., 1978, Isolation of an Fc gamma-binding protein from the cell membrane of a macrophage-like cell line (P388D1) after detergent solubilization, J. Immunol. 120: 709–715.PubMedGoogle Scholar
  78. McMaster, W. R., and Williams, A. F., 1979, Identification of Ia glycoproteins in rat thymus and purification from rat spleen, Eur. J. Immunol. 9: 426–433.PubMedCrossRefGoogle Scholar
  79. Mason, D. W., Dallrnan, M., and Barclay, A. N., 1981, Graft-versus-host disease induces ex- pression of la antigen in rat epidermal cells and gut epithelium, Nature 293: 150–151.PubMedCrossRefGoogle Scholar
  80. Matthews, T. J., Collins, J. J., Roloson, G. J., Thiel, H. J., and Bolognesi, D. P., 1981, Immunologic control of the ascites form of murine adenocarcinoma 755. IV. Characterization of the protective antibody in hyperimmune serum, J. Immunol. 126: 2332–2336.PubMedGoogle Scholar
  81. Mellman, I. S., and Unkeless, J. C., 1980, Purification of a functional mouse Fc receptor through the use of a monoclonal antibody, J. Exp. Med. 152: 1048–1069.PubMedCrossRefGoogle Scholar
  82. Mellman, I. S., Steinman, R. M., Unkeless, J. C., and Cohn, Z. A., 1980, Selective iodination and polypeptide composition of pinocytic vesicles, J. Cell. Biol. 86: 712–722.PubMedCrossRefGoogle Scholar
  83. Mellman, I. S., Plutner, H., Steinman, R. M., Unkeless, J. C., and Cohn, Z. A., 1983, Internalization and degradation of macrophage Fc receptors during receptor-mediated phagocytosis, J. Cell. Biol. 96: 887–895.PubMedCrossRefGoogle Scholar
  84. Messner, R. P., and Jelinek, J., 1970, Receptors for human gamma G globulin on human neutrophils, J. Clin. Invest. 49: 265–271.CrossRefGoogle Scholar
  85. Michl, J., Pieczonka, M. M., Unkeless, J. C., and Silverstein, S. C., 1979, Effects of immobilized immune complexes on Fc-and complement-receptor function in resident and thioglycollate-elicited mouse peritoneal macrophage, J. Exp. Med. 150: 607–621.Google Scholar
  86. Montal, M., and Miller, P., 1972, Formation of bimolecular membranes from lipid mono-layers and a study of their electrical properties, Proc. Natl. Acad. Sci. USA 69: 35613566.Google Scholar
  87. Muller, W. A., Steinman, R. M., and Cohn, Z. A., 1983, Membrane proteins of the vacuolar system. III. Further studies on the composition and recycling of endocytic vacuole membrane in cultured macrophages, J. Cell Biol. 96: 29–36.PubMedCrossRefGoogle Scholar
  88. Nathan, C., Brukner, L., Kaplan, G., U:ikeless, J., and Cohn, Z., 1980, Role of activated macrophages in antibody-dependent lysis of tumor cells, J. Exp. Med. 152: 183–197.Google Scholar
  89. Nitta, T., and Suzuki, T., 1982, Biochemical signals transmitted by Fc gamma receptors:Triggering mechanisms of the increased synthesis of adenosine-3’,5’-cyclic monophosphate mediated by Fcy2a-and Fc72a_ receptors of a murine macrophage-like cell line (P388D1), J. Immunol. 129: 2708–2714.PubMedGoogle Scholar
  90. Nussenzweig, M. C., Steinman, R. M., Unkeless, J. C., Witmer, M. D., Gutchinov, B., and Cohn, Z. A., 1981, Studies of the cell surface of mouse dendritic cells and other leukocytes, J. Exp. Med. 154: 168–187.PubMedCrossRefGoogle Scholar
  91. Ortaldo, J. R., Sharrow, S. O., Timonen, T., and Herberman, R. B., 1981, Determination of surface antigens on highly purified human NK cells by flow cytometry with monoclonal antibodies, J. Immunol. 127: 2401–2409.PubMedGoogle Scholar
  92. Peiris, J. S. M., Gordon, S., Unkeless, J. C., and Porterfield, J. S., 1981, Monoclonal antiFc receptor IgG blocks antibody enhancement of viral replication in macrophages, Nature 289: 189–191.PubMedCrossRefGoogle Scholar
  93. Perlman, H., Perlman, P., Schreiber, R. D., and Muller-Eberhard, H. J., 1981, Interaction of target cell-bound C3bi and C3d with human lymphocyte receptors: Enhancement of antibody-mediated cellular cytotoxicity, J. Exp. Med. 153: 1592–1603.CrossRefGoogle Scholar
  94. Perussia, B., Trinchieri, G., Lebman, D., Jankiewicz, J., Lange, B., and Rovera, G., 1982, Monoclonal antibodies that detect differentiation surface antigens on human myelomonocytic cells, Blood 59: 382–392.PubMedGoogle Scholar
  95. Perussia, B., Acuto, O., Terhorst, C., Faust, J., Lazarus, R., Fanning, V., and Trinchieri, G., 1983, Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. II. Studies of B73.1 antibody antigen interaction on the lymphocyte membrane, J. Immunol 130: 2142–2148.PubMedGoogle Scholar
  96. Pober, J. S., and Gimbrone, M. A., Jr., 1982, Expression of la-like antigens by human vascular endothelial cells is inducible in vitro: Demonstration by monoclonal antibody binding and immunoprecipitation, Proc. Natl. Acad. Sci. USA 79: 6641–6645.PubMedCrossRefGoogle Scholar
  97. Raff, H. V., Picker, L. J., and Stobo, J. D., 1980, Macrophage heterogeneity in man. A subpopulation of HLA-DR bearing macrophages required for antigen-induced T cell activation also contains stimulators for autologous-reactive T cells, J. Exp. Med. 152: 581–593.PubMedCrossRefGoogle Scholar
  98. Ralph, P., Nakoinz, I., Diamond, B., and Yelton, D., 1980, All classes of murine IgG antibody mediate macrophage phagocytosis and lysis of erythrocytes, J. Immunol. 125: 1885–1888.PubMedGoogle Scholar
  99. Ralph, P., Ho, M. K., Litcofsky, P. B., and Springer, T. A., 1983a, Expression and induction in vitro of macrophage differentiation antigens on murine cell lines, J. Immunol. 130: 108–114.PubMedGoogle Scholar
  100. Ralph, P., Punjabi, C. J., Welte, K., Litcofsky, P. B., Ho, M. K., Moore, M. A. S., and Springer, T. A., 1983b, Lymphokine inducing “terminal differentiation” of the human monoblast leukemia line U937, Blood 62: 1169–1175.PubMedGoogle Scholar
  101. Rosenberg, S. A., Ligler, F. S., Ugolini, V., and Lipsky, P. E., 1981, A monoclonal antibody that identifies human peripheral blood monocytes recognizes the accessory-cells required for mitogen-induced T lymphocyte proliferation, J. Immunol. 126: 1473–1477.PubMedGoogle Scholar
  102. Ross, G. D., 1980, Analysis of the different types of leukocyte membrane complement receptors and their interaction with the complement system, J. Immunol. Methods 37: 197–211.PubMedCrossRefGoogle Scholar
  103. Ross, G. D., and Lambris, J. D., 1982, Identification of a C3bi-specific membrane complement receptor that is expressed on lymphocytes, monocytes, neutrophils, and erythrocytes, J. Exp. Med. 155: 96–110.PubMedCrossRefGoogle Scholar
  104. Ross, G. D., Newman, S. L., Lambris, J. D., Devery-Pocius, J. E., Cain, J. A., and Lachman, P. J., 1983, Generation of three different fragments of bound C3 with purified factor I or serum II. Location of binding sites in the C3 fragments for factors B and H, complement receptors, and bovine conglutinin, J. Exp. Med. 158: 334–352.PubMedCrossRefGoogle Scholar
  105. Sanchez-Madrid, F., Nagy, J., Robbins, E., Simon, P., and Springer, T. A., 1983a, The human lymphocyte-function associated antigen (LFA-1), the C3bi complement recepfor (OKM1/Mac-1), and the p150,95 molecule: Characterization of a leukocyte differentiation antigen family with distinct alpha subunits and a common beta subunit, J. Exp. Med 158: 1785–1803.PubMedCrossRefGoogle Scholar
  106. Sanchez-Madrid, F., Simon, P., Thompson, S., and Springer, T. A., 1983b, Mapping of antigenic and functional epitopes on the alpha and beta subunits of two related glycoproteins involved in cell interactions, LFA-1 and Mac-1, J. Exp. Med. 158: 586–602.PubMedCrossRefGoogle Scholar
  107. Sarmiento, M., Loken, M. R., Trowbridge, I., Coffman, R. L., and Fitch, F. W., 1982, High molecular weight lymphocyte surface proteins are structurally related and are expressed on different cell populations at different times during lymphocyte maturation and differentiation, J. Immunol. 128: 1676–1684.PubMedGoogle Scholar
  108. Scheid, M. P., and Triglia, D., 1979, Further description of the Ly-5 system, Immunogenetics 9: 423–433.CrossRefGoogle Scholar
  109. Schneider, R. J., Atkinson, J. P., Krause, V., and Kulczycki, A., Jr., 1981, Characterization of ligand-binding activity of isolated murine Fe y receptor, J. Immunol. 126: 735–740.PubMedGoogle Scholar
  110. Schrader, J. W., Battye, F., and Scollay, R., 1982, Expression of Thy-1 antigen is not limited to T cells in cultures of mouse hemopoietic cells, Proc. Natl. Acad. Sci. USA 79: 4161–4165.PubMedCrossRefGoogle Scholar
  111. Segal, D. M., and Titus, J. A., 1978, The subclass specificity for the binding of murine myeloma proteins to macrophage and lymphocyte cell lines and to normal spleen cells, J. Immunol. 120: 1395–1403.PubMedGoogle Scholar
  112. Sheehy, M. J., Quintieri, F. B., Leung, D. Y. M., Geha, R. S., Dubey, D. P., Limmer, C. E., and Yunis, E. J., 1983, A human large granular lymphocyte clone with natural killer-like activity and T cell-like surface markers, J. Immunol. 130: 524–526.PubMedGoogle Scholar
  113. Shen, H. H., Talle, M. A., Goldstein, G., and Chess, L., 1983, Functional subsets of human monocytes defined by monoclonal antibodies: A distinct subset of monocytes contains the cells capable of inducing the autologous mixed lymphocyte culture, J. Immunol. 130: 698–705.PubMedGoogle Scholar
  114. Silberberg-Sinakin, I., Thorbecke, G. J., Baer, R. L., Rosenthal, S. A., and Berezowsky, V., 1976, Antigen-bearing Langerhans cells in skin, dermal lymphatics and in lymph nodes, Cellular Immunol. 25: 137–151.CrossRefGoogle Scholar
  115. Smith, B. R. Springer, T. A., Rosenthal, D. S., and Ault, K. A., 1984, Distribution of the myeloid surface antigen Mac-1 on normal and leukemic human cells, Blood (submitted for publication).Google Scholar
  116. Springer, T. A., 1980, Cell-surface differentiation in the mouse. Characterization of “jumping” and “lineage” antigens using xenogeneic rat monoclonal antibodies, in: Monoclonal Antibodies ( R. H. Kennett, T. J. McKearn, and K. K. Bechtol, eds.), pp. 185–217, Plenum Press, New York.CrossRefGoogle Scholar
  117. Springer, T. A., 1981, Mac-1,2,3, and 4: Murine macrophage differentiation antigens identified by monoclonal antibodies, in: Heterogeneity of Mononuclear Phagocytes ( O. Förster and M. Landy, eds.), pp. 37–46, Academic Press, New York.Google Scholar
  118. Springer, T. A., Galfre, G., Secher, D. S., and Milstein, C., 1979, Mac-1: A macrophage dif- ferentiation antigen identified by monoclonal antibody, Eur. J. Immunol. 9: 301–306.PubMedCrossRefGoogle Scholar
  119. Springer, T. A., Davignon, D., Ho, M. K., Kürzinger, K., Martz, E., and Sanchez-Madrid, F., 1982, LFA-1 and Lyt-2,3, molecules associated with T lymphocyte-mediated killing; and Mac-1, an LFA-1 homologue associated with complement receptor function, Immunol. Rev. 68: 111–135.CrossRefGoogle Scholar
  120. Steinman, R. M., and Cohn, Z. A., 1973, Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution, J. Exp. Med. 137: 1142–1162.PubMedCrossRefGoogle Scholar
  121. Steinman, R. M., and Cohn, Z. A., 1974, Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro, J. Exp. Med. 139: 380–397.PubMedCrossRefGoogle Scholar
  122. Steinman, R. M., Kaplan, G., Witmer, M. D., and Cohn, Z. A., 1979, Identification of a novel cell type in peripheral lymphoid organs of mice. V. Purification of spleen dendritic cells, new surface markers, and maintenance in vitro, J. Exp. Med. 149: 1–16.PubMedCrossRefGoogle Scholar
  123. Stings, G., Katz, S. I., Clement, L., Green, I., and Shevach, E., 1978, Immunologic functions of la-bearing epidermal Langerhans cells, J. Immunol. 121: 2005–2113.Google Scholar
  124. Sun, D., and Lohmann-Matthes, M. L., 1982, Functionally different subpopulations of mouse macrophages recognized by monoclonal antibodies, Eur. J. Immunol. 12: 134140.Google Scholar
  125. Swartz, R. H., Dickler, H. B., Sachs, D. H., and Schwartz, B. D., 1976, Studies of la antigens on murine peritoneal macrophages, Scand. J. Immunol. 5: 731–743.CrossRefGoogle Scholar
  126. Tamaki, K., Stingl, G., Gullino, M., Sachs, D. H., and Katz, S. I., 1979, la antigens in mouse skin are predominantly expressed on Langerhans cells, J. Immunol. 123: 784–787.Google Scholar
  127. Taniyama, T., and Watanabe, T., 1982, Establishment of a hybridoma secreting a monoclonal antibody specific for activated tumoricidal macrophages, J. Exp. Med. 156: 1286 1291.Google Scholar
  128. Tew, J. G., Thorbeck, G. J., and Steinman, R. M., 1982, Dendritic cells in the immune response: Characteristics and recommended nomenclature (a report from the Reticuloendothelial Society Committee on Nomenclature), J. Reticuloendothel. Soc. 31: 371–380.PubMedGoogle Scholar
  129. Thorbecke, G. J., Silberberg-Sinakin, E., and Flotte, T. J., 1980, Langerhans cells as macrophages in skin and lymphoid organs, J. Invest. Dermatol. 75: 32–43.PubMedCrossRefGoogle Scholar
  130. Todd, R. F. III, and Schlossman, S. F., 1982, Analysis of antigenic determinants on human monocytes and macrophages, Blood 59: 775–786.PubMedGoogle Scholar
  131. Todd, R. F. III, and Schlossman, S. F., 1984, Utilization of monoclonal antibodies in the characterization of monocyte-macrophage differentiation antigens, in: The Reticuloendothelial System: A Comprehensive Treatise, Vol. 6: Immunology (J. A. Bellanti and H. B. Herscowitz, eds.), pp. 87–1 11, Plenum Press, New York.Google Scholar
  132. Todd, R. F. III, Nadler, L. M., and Schlossman, S. F., 1981, Antigens on human monocytes identified by monoclonal antibodies, J. Immunol. 126: 1435–1442.PubMedGoogle Scholar
  133. Todd, R. F. III, Van Agthoven, A., Schlossman, S. F., and Terhorst, C., 1982, Structural analysis of differentiation antigens Mol and Mo2 on human monocytes, Hybridoma 1: 329–337.PubMedCrossRefGoogle Scholar
  134. Todd, R. F. III, Bhan, A. K., Kabawat, S. E., and Schlossman, S. F., 1984, Human myelomonocytic differentiation antigens defined by monoclonal antibodies, in: HumanLeukocyte Markers Detected by Monoclonal Antibodies (A. Bernard, L. Boumsell, J.Dausset, C. Milstein, and S. F. Schlossman, eds.), Springer-Verlag, Berlin (in press). Townsend, R., and Stahl, P., 1981, Isolation and characterization of a mannose/N-acetylglucosamine/fucose-binding protein from rat liver, Biochem. J. 194:209–214.Google Scholar
  135. Trowbridge, I. S., and Omary, M. B., 1981, Molecular complexity of leukocyte surface glycoproteins related to the macrophage differentiation antigen Mac-1, J. Exp. Med. 154: 1517–1524.PubMedCrossRefGoogle Scholar
  136. Ugolini, V., Nunez, G., Smith, R. G., Stastny, P., and Capra, J. D., 1980, Initial characterization of monoclonal antibodies against human monocytes, Proc. Natl. Acad. Sci. USA. 77: 6764–6768.PubMedCrossRefGoogle Scholar
  137. Unanue, E. R., 1981, The regulatory role of macrophages in antigenic stimulation. Part Two. Symbiotic relationship between lymphocytes and macrophages, Adv. Immunol. 31: 1–136.PubMedCrossRefGoogle Scholar
  138. Unkeless, J., 1979, Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors, J. Exp. Med. 150: 580–596.PubMedCrossRefGoogle Scholar
  139. Unkeless, J. C., and Eisen, H. N., 1975, Binding of monomeric immunoglobulins to Fc receptors of mouse macrophages, J. Exp. Med. 142: 1520–1533.PubMedCrossRefGoogle Scholar
  140. Unkeless, J. C., Fleit, H., and Mellman, I. S., 1981, Structural aspects and heterogeneity of immunoglobulin Fc receptors, in: Advances in Immunology, Vol. 31 ( F. J. Dixon and H. G. Kunkel, eds.), pp. 247–270, Academic Press, New York.Google Scholar
  141. Van Der Reijden, H. J., Van Rhenen, D. J., Lansdorp, P. M., Van’t Veer, M. B., Langenhuijsen, M. M. A. C., Engelfriet, C. P., and Von Dem Borne, A. E. C. K., 1983, A comparison of surface marker analysis and FAB classification in acute myeloid leukemia, Blood 61: 443–448.PubMedGoogle Scholar
  142. Van Voorhis, W. C., Hair, L. S., Steinman, R. M., and Kaplan, G., 1982, Human dendritic cells. Enrichment and characterization from peripheral blood, J. Exp. Med. 155: 1172–1187.PubMedCrossRefGoogle Scholar
  143. Walker, W. S., 1976, Separate Fc receptors for immunoglobulins IgG2a and IgG2b on an established cell line of mouse macrophages, J. Immunol. 116: 911–914.PubMedGoogle Scholar
  144. Wright, S. D, and Silverstein, S. C., 1982, Tumor-promoting phorbol esters stimulate Cab and C3b1 receptor-mediated phagocytosis in cultured human monocytes, J. Exp. Med. 156: 1149–1164.PubMedCrossRefGoogle Scholar
  145. Wright, S. D., Van Voorhis, W. C., and Silverstein, S. C., 1983, Identification of the C3b’receptor on human leukocytes using a monoclonal antibody, Fed. Proc. 42: 1079.Google Scholar
  146. Yoshie, O., Mellman, I. S., Broeze, R. J., Garcia-Blanco, M., and Lengyel, P., 1982, Interferon action: Effects of mouse alpha and beta interferons on rosette formation, phagocytosis, and surface-antigen expression of cells of the macrophage-type line RAWCr.1, Cell. Immunol. 73: 128–140.PubMedCrossRefGoogle Scholar
  147. Young, J. D. E., Unkeless, J. C., Kaback, H. R., and Cohn, Z. A., 1983a, Macrophage membrane potential changes associated with y2b/IFc receptor-ligand binding, Proc. Natl. Acad. Sci. USA. 80: 1357–1361.PubMedCrossRefGoogle Scholar
  148. Young, J. D. E., Unkeless, J. C., Kaback, H. R., and Cohn, Z. A., 1983b, Mouse macrophage Fc receptor for IgG y2b/7l in artificial and plasma membrane vesicles functions as a ligand-dependent ionophore, Proc. Natl. Acad. Sci. USA 80: 1636–1640.PubMedCrossRefGoogle Scholar
  149. Zarling, J. M., Clouse, K. A., Biddison, W. E., and Kung, P. C., 1981, Phenotypes of human natural killer cell populations detected with monoclonal antibodies, J. Immunol. 127: 2575–2580.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Timothy A. Springer
    • 1
  • Jay C. Unkeless
    • 2
  1. 1.Laboratory of Membrane Immunochemistry Dana-Farber Cancer InstituteHarvard Medical SchoolBostonUSA
  2. 2.Laboratory of Cellular Physiology and ImmunologyRockefeller UniversityNew YorkUSA

Personalised recommendations