Advances in Elastomers and Rubber Elasticity pp 157-173 | Cite as
A New Free Radical Approach to the Synthesis of Polydimethylsiloxane-Vinyl Monomer Block Polymers
Abstract
The platinum catalyzed condensation of bis(silylpinacolate) free radical initiators bearing vinyl groups attached to silicon with α,ω-hydrogen functional polydimethylsiloxane oligomers, i.e., oligomers containing terminal Si-H bonds, leads to the preparation of high molecular weight macroinitiators. The thermolysis of these macroinitiators in the presence of various vinyl monomers provides a direct synthesis of block polymers. Depending on the monomer chosen, simple triblock and/or multisequence block polymers can readily be prepared. Analysis of the products of the block polymerizations using styrene monomer shows that only block polymers are formed. These block polymers display unusual properties such as intense iridescence, reversible stress crazing and solvent dependent mechanical properties. The stress-strain properties of the block polymers have been measured and found to be related to both the relative proportions of the hard and soft blocks and to their respective block lengths. At hard block contents of less than approximately 50%, the block polymers are thermoplastic elastomers while at compositions greater than 50% the block polymers are rubber modified thermoplastics.
Keywords
Initiator Group Reaction Flask Vinyl Monomer High Molecular Weight Polymer Block PolymerPreview
Unable to display preview. Download preview PDF.
References
- 1.J. W. Dean, J. Polym. Sci. Polym. Lett. Ed., 8, 677 (1970).ADSCrossRefGoogle Scholar
- 2.J. C. Saam, A. H. Ward and F. W. Gordon Fearson, Polym. Preprints, 13 (1) 524 (1972).Google Scholar
- 3.P. C. Juliano, U.S. Patent 3,663,650, May 11, 1972 (to General Electric); Chem. Abstr. 77, 127417m (1972).Google Scholar
- 4.P. Bajaj, S. K. Varshney and A. Misra, J. Polym. Sci. Polym. Chem. Ed., 18, 295, (1980).ADSCrossRefGoogle Scholar
- 5.P. Chaumont, G. Beinert, J. Herz and P. Rempp, Europ. Polym. J., 15, 459 (1979).CrossRefGoogle Scholar
- 6.C. H. Bamford and X. Han, Polymer, 22, 1299 (1981).CrossRefGoogle Scholar
- 7.C. H. Bamford and S. U. Mullik, Polymer, 17, 98 (1976).Google Scholar
- 8.G. Smets and A. E. Woodward, J. Polym. Sci., 14, 126 (1954).ADSCrossRefGoogle Scholar
- 9.A. E. Woodward and G. Smets, J. Polym. Sci., 17, 51 (1955).ADSCrossRefGoogle Scholar
- 10.W. Heitz, C. Oppenheimer, P. S. Anand and X.-U. Qiu, Makromol. Chem. Suppl., 6, 46 (1984).CrossRefGoogle Scholar
- 11.I. Piirma and L.-P. H. Chou, J. Appl. Polym. Sci., 24, 2051 (1979).CrossRefGoogle Scholar
- 12.A. V. Toblosky and A. Rembaum, J. Appl. Polym. Sci., 8, 307 (1964).CrossRefGoogle Scholar
- 13.N. Z. Erdy, C. F. Ferraro and A. V. Tobolsky, J. Polym. Sci., 8, 763 (1970).Google Scholar
- 14.E. Zaganiaris and A. V. Tobolsky, J. Appl. Polym. Sci., 11, 1997 (1970).CrossRefGoogle Scholar
- 15.B. D. Karstedt, U.S. Patents 3,715,334, Feb. 6, 1973; 3,775,452, Nov. 27, 1973, and 3,814,730, Jun. 4, 1974 (to General Electric).Google Scholar
- 16.R. Calas, N. Duffaut, C. Biran, M. P. Bourgeois, F. Pisciotti and M. J. Dunogues, C. R. Acad. Sc. Paris, t. 267, 322 (1968).Google Scholar
- 17.M. Ziebarth and W. P. Neumann, Liebigs Ann. Chem., 1765 (1978).Google Scholar
- 18.T. Otsu and M. Yoshida, Makromol. Chem. Rapid Comm., 3, 127 (1982); T. Otsu, M. Yoshida and T. Tazaki, ibid., p. 133.Google Scholar
- 19.A. Bledski, D. Braun and K. Titzschkau, Makromol. Chem., 184, 745 (1983).CrossRefGoogle Scholar
- 20.A. Noshay and J. E. McGrath, Block Copolymers, Academic Press, Inc., New York, 1977, p. 26.Google Scholar
- 21.J. Bandrup and E. H. Immergut, Polymer Handbook, Interscience, New York, 1966, pp. 111–183.Google Scholar
- 22.J. V. Crivello, D. A. Conlon and J. L. Lee, J. Polym. Sci. Polym. Chem. Ed., 24(6), 1197 (1986); ibid., p. 1251.Google Scholar