Skip to main content

Abstract

Polymer networks can usually sustain large recoverable deformations due to the presence of chemical crosslinks which serve to bind long chains into a permanent network structure. The elasticity of the network chains is considered to originate primarily in terms of the entropy of the chains (1). The elastic free energy of an elastomeric network is usually treated as the sum of the contributions of its individual chains. Therefore, the most important parameter in describing the properties of a network is the molecular weight of the chain between crosslinks (Mc).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.R.G. Trealor, “The Physics of Rubber Elasticity,” 3rd Ed., Clarendon, Oxford (1975).

    Google Scholar 

  2. W. Kuhn, Kolloid Z., 76, 258 (1936); Angew. Chem., 51, 640 (1938).

    Article  Google Scholar 

  3. P.J. Flory, “Principles of Polymer Chemistry,” Cornell University Press, Ithaca, New York (1953).

    Google Scholar 

  4. J.P. Queslel and J.E. Mark, Adv. Polym. Sci., 65, 135, (1984).

    Article  Google Scholar 

  5. J.E. Mark, Adv. Polym. Sci., 44, 1, (1982).

    Article  Google Scholar 

  6. J.E. Mark and J.L. Sullwan, J. Chem. Phys., 66, 1006 (1977).

    Article  ADS  Google Scholar 

  7. M.A. Llorente and J.E. Mark, J. Chem. hys., 71, 682 (1979).

    Article  ADS  Google Scholar 

  8. M.A. Llorente and J.E. Mark, Macromolecules, 13, 681 (1980).

    Article  ADS  Google Scholar 

  9. M.A. Llorente, A.L. Andrady and J.E. Mark, J. Polym. Sci., Polym. Phys. Ed., 19, 621 (1981).

    Google Scholar 

  10. M.A. Llorente, A.L. Andrady and J.E. Mark, Colloid Polym. Sci., 259, 1056 (1981).

    Article  Google Scholar 

  11. J.E. Mark, in “Elastomers and Rubber Elasticity,” J.E. Mark and J. Lal, Eds., Am. Chem. Soc., Washington, D.C. (1982).

    Google Scholar 

  12. P.J. Flory and B. Erman, Macromolecules, 15, 800 (1982).

    Article  ADS  Google Scholar 

  13. B. Erman and P.J. Flory, Macromolecules, 15, 806 (1982).

    Article  ADS  Google Scholar 

  14. M. Beltzung, C. Picot, P. Rempp and J. Herz, Macromolecules, 15, 1594 (1982).

    Article  ADS  Google Scholar 

  15. M. Beltzung, J. Herz and C. Picot, ibid, 16, 580 (1983); ibid, 17, 663 (1984).

    Google Scholar 

  16. J. Bastide, C. Picot and S. Candau, J. Macromol. Sci., Phys. Ed., B19, 13 (1981).

    Google Scholar 

  17. S. Candau, J. Bastide and Delsanti, Adv. Polym. Sci., 44, 27 (1982).

    Article  Google Scholar 

  18. J. Bastide, R. Duplessix, C. Picot and S. Candau, Macromolecules, 17, 83 (1984).

    Article  ADS  Google Scholar 

  19. P. Debye and A.M. Bueche, J. Appl. Phys., 20, 518 (1949).

    Article  ADS  Google Scholar 

  20. A. Einstein, Ann. de Physik, 33, 1275 (1910).

    Article  MATH  ADS  Google Scholar 

  21. P.J. Flory, and J. Rehner, Jr., J. Chem. Phys., 11, 521 (1943).

    Article  ADS  Google Scholar 

  22. R.S. Stein, J. Polym. Sci., Polym. Lett, 7, 657 (1969).

    Article  Google Scholar 

  23. F. Bueche, J. Colloid Interface Sci., 33, 61 (1970).

    Article  Google Scholar 

  24. K.L. Wun and W. Prins, J. Polym. Sci., Polym. Phys. Ed., 12, 533 (1974).

    Article  ADS  Google Scholar 

  25. R.S. Stein, R.J. Farris, S. Kumar and V. Soni, in “Elastomer and Rubber Elasticity,” J.E. Mark and J. Lal, Am. Chem. Soc., Washington, D.C. (1982).

    Google Scholar 

  26. R.S. Stein and J.J. Keane, J. Polym. Sci., 17, 21 (1955).

    Article  ADS  Google Scholar 

  27. V. Soni, Ph.D. Dissertation, University of Massachusetts, Amherst (1986).

    Google Scholar 

  28. R.S. Stein, V. Soni, and H. Yang, in preparation.

    Google Scholar 

  29. W. Kuhn, F. Grun, Colloid Z., 101, 248 (1942).

    Google Scholar 

  30. J. Hrabowska and R.S. Stein, results to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stein, R.S., Soni, V.K., Yang, H.E. (1986). Optical Studies of Network Topology. In: Lal, J., Mark, J.E. (eds) Advances in Elastomers and Rubber Elasticity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1436-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1436-4_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1438-8

  • Online ISBN: 978-1-4757-1436-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics