Age-Related Alterations in β-Adrenergic Modulation of Cardiac Cell Function

  • Charles R. Filburn
  • Edward G. Lakatta


The cardiovascular system’s raison d’être is to transport oxygen, nutrients, blood cells, and other substances to body tissues, to remove the waste products of metabolism, and to maintain constant temperature. Since these are not fixed but can vary over at least a tenfold range (i.e., from sleep to maximum exercise) the cardiovascular system, to maintain optimal efficiency, adjusts its level of function to meet the body requirements.


Sarcoplasmic Reticulum Cardiac Cell Dependent Protein Kinase Phosphorylase Kinase Phosphoprotein Phosphatase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelstein, R. S., and Eisenberg, E., 1980, Regulation and kinetics of the actin-myoxin-ATP interaction, Ann. Rev. Biochem 49: 921–956.PubMedGoogle Scholar
  2. Adelstein, R. S., Pato, M. D., and Conti, M. A. 198lb, The role of phosphorylation in regulatory contractile proteins, Adv. Cyclic Nucleotide Res. 14: 361–373.Google Scholar
  3. Adelstein, R. S., Pato, M. D., Selless, J. R., Conti, M. A., and Eaton, C. R., 1981a, Regulation of contraction by reversible phosphorylation of myosin and myosin kinase, in: Cold Spring Harbor Conferences on Cell Proliferation, Vol. 8, Protein Phosphorylation ( Adelstein, R. S., Pato, M. D., Selless, J. R., Conti, M. A., and Eaton, C. R., eds.), pp. 811–822, Cold Spring Harbor Laboratory.Google Scholar
  4. Amer, M. S., and Byrne, J. E., 1975, Interchange of adenyl and guanyl cyclases as an explanation for transformation of ß- and a-adrenergic responses in the rat striatum, Nature 256: 421–424.PubMedGoogle Scholar
  5. Bailin, G., 1979, Phosphorylation of a bovine cardiac actin complex, Am. J. Physiol. 236: C41 - C46.PubMedGoogle Scholar
  6. Barany, M., and Barany, K., 1980, Phosphorylation of myofibrillar proteins, Ann. Rev. Physiol. 42: 275–292.Google Scholar
  7. Barany, M., Barany, K., Barron, J. T., Kopp, S. J., Doyle, D. D., Hager, S. R., Schlesinger, D. H., Hama, F., Sayers, S. T., and Janis, R. A., 1981, Protein phosphorylation in live muscle, in:Cold Spring Harbor Conference on Cell Proliferation, Vol. 8, Protein Phosphorylation (O. M. Rosen and E. G. Krebs, eds.), pp. 869–886, Cold Spring Harbor Laboratory.Google Scholar
  8. Baumann, G., Schrader, J., and Gerlach, E., 1981, Inhibitory action of adenosine on histamine-and dopamine-stimulated cardiac contractility and adenylate cyclase in guinea pigs, Circ. Res. 48: 259–266.PubMedGoogle Scholar
  9. Benfey, B. G., 1982, Function of myocardial a-adrenoreceptors, Life Sci. 31: 101–112.PubMedGoogle Scholar
  10. Bertel, O., Buhler, F. R., Kiowski, W., and Lutold, B. E., 1980, Decreased beta adrenoreceptor responsiveness as related to age, blood pressure, and plasma catecholamines in patients with essential hypertension, Hypertension 2: 130–138.Google Scholar
  11. Bhatnagar, G. M., Walford, G. D., Beard, E. S., and Lakatta, E. G., 1982, Dissociation of time to peak force and myofibrillar ATPase activity with aging of the myocardium, Fed. Proc. 41: 1513.Google Scholar
  12. Bilezikjian, L. M., Kranias, E. G., Potter, J. D., and Schwartz, A., 1981, Studies on phosphorylation of canine cardiac sarcoplasmic reticulum by calmodulin-dependent protein kinase, Circ. Res. 49: 1356–1362.PubMedGoogle Scholar
  13. Blaustein, M. P., 1977, Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons, Biophys. J. 20: 70–111.Google Scholar
  14. Brooker, G., 1977, Dissociation of cyclic GMP from the negative inotropic action of carbachol in guinea pig atria, J. Cyclic Nucleotide Res. 3: 407–413.PubMedGoogle Scholar
  15. Brunton, L. L., Hayes, J. S., and Moyer, S. E., 1981, Compartments of cyclic AMP and protein kinase in heart: data supporting their existence and speculations on their subcellular basis, in: Cold Spring Harbor Conference on Cell Proliferation, Vol. 8, Protein Phosphorylation ( Brunton, L. L., Hayes, J. S., and Moyer, S. E., eds.), pp. 225–235, Cold Spring Harbor Laboratory.Google Scholar
  16. Bygrave, F. L., 1978, Mitochondria and the control of intracellular calcium, Biol. Rev. 53: 4379.Google Scholar
  17. Carafoli, E., and Crompton, M., 1978, The regulation of intracellular calcium by mitochondria, Ann. NY Acad. Sci. 307: 269–284.PubMedGoogle Scholar
  18. Caroni, P., and Carafoli, E., 1981a, Regulation of Ca2+-pumping ATPase of heart sarcolemma by a phosphorylation-dephosphorylation process, J. Biol. Chem. 256: 9371–9373.PubMedGoogle Scholar
  19. Caroni, P., and Carafoli, E., 1981b, The Ca2+-pumping ATPase of heart sarcolemma. Characterization, calmodulin dependence, and partial purification, J. Biol. Chem. 256: 3263–3270.PubMedGoogle Scholar
  20. Clark, M. G., and Patten, G. S., 1981, Adrenaline activation of phosphofructokinase in rat heart mediated by a-receptor mechanism independent of cyclic AMP, Nature 292: 461–463.PubMedGoogle Scholar
  21. Cohen, P., 1982, The role of protein phosphorylation in neural and hormonal control of cellular activity, Nature 296: 613–620.PubMedGoogle Scholar
  22. Coll, K. E., Suresh, K. J., Corkey, B. E., and Williamson, J. R., 1982, Determination of the matrix free Ca2+ concentration and kinetics of Ca2+ efflux in liver and heart mitochondria, J. Biol. Chem. 257: 8696–8704.PubMedGoogle Scholar
  23. Conti, M. A., and Adelstein, R. S., 1980, Phosphorylation by cyclic adenosine 3’:5’-monophosphate-dependent protein kinase regulates myosin light chain kinase, Fed. Proc. 39: 1569–1573.PubMedGoogle Scholar
  24. Conway, J., Wheeler, R., and Sannerstedt, R., 1971, Sympathetic nervous activity during exercise in relation to age, Cardiovasc. Res. 5: 577–581.PubMedGoogle Scholar
  25. Cooke, B. A., Lindh, M. L., and Janszen, F. H. A., 1976, Correlation of protein kinase activation and testosterone production after stimulation of Leydig cells with.luteinizing hormone, Biochem. J. 160: 439–446.PubMedGoogle Scholar
  26. Cooper, R. H., Sul, H. S., and Walsh, D. A., 1981, Phosphorylation and activation of the cardiac isoenzyme of phosphorylase kinase by the cAMP-dependent protein kinase, J. Biol. Chem. 256: 8030–8038.PubMedGoogle Scholar
  27. Corbin, J. D., Sugden, P. H., Lincoln, T. M., and Keely, S. M., 1977, Compartmentalization of adenosine 3’,5’-monophosphate and adenosine 3’,5’-monophosphate-dependent protein kinase in heart tissue, J. Biol. Chem. 253: 3854–3861.Google Scholar
  28. DeGubareff, T., and Sleator, W., 1965, Effects of caffeine on mammalian atrial muscle and its interaction with adenosine and calcium, J. Pharmacol. Exp. Ther. 148: 202–214.PubMedGoogle Scholar
  29. Diamond, J., Ten Eich, R. E., and Tropani, A. M., 1977, Are increases in cyclic GMP levels responsible for the negative inotropic effects of acetylcholine in the heart? Biochem. Biophys. Res. Commun. 79: 912–918.PubMedGoogle Scholar
  30. Dipolo, R., 1977, Characterization of the ATP-dependent calcium efflux in dialyzed squid giant axons, J. Gen. Physiol. 69: 795–813.PubMedGoogle Scholar
  31. Dipolo, R., and Caputo, C., 1977, The effect of ATP on calcium efflux in dialyzed barnacle muscle fibres, Biochem. Biophys. Acta 470: 389–394.PubMedGoogle Scholar
  32. Fabiato, A., 1981, Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit, J. Gen. Physiol. 78: 457–497.PubMedGoogle Scholar
  33. Fabiato, A., 1982, Calcium release in skinned cardiac cells: Variations with species, tissues, and development, Fed. Proc. 41: 2238–2244.PubMedGoogle Scholar
  34. Fabiato, A., and Fabiato, F., 1975, Relaxing and inotropic effects of cyclic AMP on skinned cardiac cells, Nature 253: 556–558.PubMedGoogle Scholar
  35. Fabiato, A., and Fabiato, F., 1979, Calcium and cardiac excitation-contraction coupling, Ann. Rev. Physiol. 41: 473–484.Google Scholar
  36. Fleisch, J. H., 1981, Age-related decrease in beta adrenoreceptor activity of the cardiovascular system, Trends Pharmacol. Sci. 2: 337–339.Google Scholar
  37. Fredholm, B. B., and Hedquist, P., 1978, Adenosine—A transsynaptic modulator of norepinephrine release? in: Catecholamines: Basic and Clinical Frontiers ( E. Usdin, ed.), pp. 1146–1148, Pergamon Press, New York.Google Scholar
  38. Froehlich, J. P., Lakatta, E. G., Beard, E., Spurgeon, H. A., Weisfeldt, M. L., and Gerstenblith, G., 1978, Studies of sarcoplasmic reticulum function and contraction duration in young adult and aged rat myocardium, J. Mol. Cell. Cardiol. 10: 427–438.PubMedGoogle Scholar
  39. Frolkis, V. V., Bezrukov, V. V., Duplenko, Y. K., Shchegoleva, I. V., Schevtchuk, V. G., and Verkhratsky, N. S., 1973, Acetylcholine metabolism and cholinergic regulation of functions in aging, Gerontologia 19: 45–57.PubMedGoogle Scholar
  40. Frolkis, V. V., Schevtchuk, V. G., Verkhratsky, N. S., Stupina, A. S., Karpova, S. M., and Lakiza, T. Y., 1979, Mechanisms of neurohormonal regulation of heart function in aging, Exp. Aging Res. 5: 441–477.PubMedGoogle Scholar
  41. Gardner, R. M., and Allen, D. O., 1976, Effect of acetylcholine and glycogen phosphorylase activity and cyclic nucleotide content in isolated perfused rat hearts, J. Cyclic Nucleotide Res. 2: 171–178.PubMedGoogle Scholar
  42. Gerstenblith, G., Spurgeon, H., Froehlich, J. P., Weisfeldt, M. L., and Lakatta, E. G., 1979, Diminished inotropic responsiveness of ouabain in aged rat myocardium, Circ. Res. 44: 517–523.PubMedGoogle Scholar
  43. Guarnieri, T., Spurgeon, H., Froehlich, J. P., Weisfeldt, M. L., and Lakatta, E. G., 1979, Diminished inotropic response but unaltered toxicity to acetyltrophanthidin in the senescent beagle, Circ. Res. 60: 1548–1554.Google Scholar
  44. Guarnieri, T., Filburn, C. R., Zitnick, G., Roth, G. S., and Lakatta, E. G., 1980, Contractile and biochemical correlates of 3-adrenergic stimulation of the aged heart, Am. J. Physiol. 239: HSO1–HSO8.Google Scholar
  45. Hansford, R. G., 1980, Metabolism and energy production, in: The Aging Heart, Its Function and Response to Stress ( M. L. Weisfeldt, ed.), Vol. 12, pp. 25–76, Raven Press, New York.Google Scholar
  46. Hansford, R. G., and Castro, F., 1982a, Intramitochondrial and extramitochondrial free calcium ion concentrations of suspensions of heart mitochondria with very low plausibly physiological, contents of total calcium, J. Bioenerg. Biomembr. 14: 171–186.Google Scholar
  47. Hansford, R. G., and Castro, F., 1982b, Effect of senescence on Cat+-ion transport by heart mitochondria, Mech. Ageing Dev. 19: 5–13.PubMedGoogle Scholar
  48. Hansford, R. G., and Castro, F., 1982e, Age-linked changes in the activity of enzymes of the tricarboxylate cycle and lipid oxidation, and of carnitine content, in muscles of the rat, Mech. Ageing Dev. 19: 191–201.PubMedGoogle Scholar
  49. Hayes, J. S., Brunton, L. L., Brown, J. H., Reese, J. B., and Mayer, S. E., 1979, Hormonally specific expression of cardiac protein kinase activity, Proc. Natl. Acad. Sci. USA 76: 1570–1574.PubMedGoogle Scholar
  50. Hayes, J. S., Brunton, L. L., and Mayer, S. E., 1980, Protein phosphorylation catalyzed by cyclic AMP-dependent protein kinase by isoproterenol and prostaglandin El, J. Biol. Chem. 255: 5113–5119.PubMedGoogle Scholar
  51. Hayes, J. S., Bowling, N., King, K. L., and Bader, G. B., 1982, Evidence for selective regulation of the phosphorylation of myocyte proteins by isoproterenol and prostaglandin El, Biochim. Biophys. Acta 714: 136–142.PubMedGoogle Scholar
  52. Hazeki, O., and Ui, M., 1981, Modification of islet-activating protein of receptor-mediated regulation of cyclic AMP accumulation in isolated rat heart cells, J. Biol. Chem. 256: 2856–2862.PubMedGoogle Scholar
  53. Hedquist, P., and Fredholm, B. B., 1979, Inhibitory effect of adenosine on adrenergic neuroeffector transmission in the rabbit heart, Acta Physiol. Scand. 105: 120–122.Google Scholar
  54. High, C. W., and Stull, J. T., 1980, Phosphorylation of myosin in perfused rabbit and rat hearts, Am. J. Physiol. 239: H756 - H764.PubMedGoogle Scholar
  55. Hiraoka, T., DeBuysere, M., and Olson, M. S., 1980, Studies on the effects of ß-adrenergic agonists on the regulation of pyruvate dehydrogenase in the perfused rat heart, J. Biol. Chem. 255: 7604–7609.PubMedGoogle Scholar
  56. Hofmann, F., and Wolf, H., 1981, Basic properties of myosin light-chain kinase from bovine cardiac muscle, in: Cold Spring Harbor Conference on Cell Proliferation, Vol. 8, Protein Phosphorylation (O. Hofmann, F., and Wolf, H., eds.), pp. 841–854, Cold Spring Harbor Laboratory.Google Scholar
  57. Holroyde, M. J., Howe, E., and Solaro, R. J., 1979, Modification of calcium requirements for activation of cardiac myofibrillar ATPase by cyclic AMP dependent phosphorylation, Biochim. Biophys. Acta 586: 63–69.Google Scholar
  58. Jakobs, K. H., Aktories, K., and Schultz, G., 1979, GTP-dependent inhibition of cardiac adenylate cyclase by muscarinic cholinergic agonists, N. S. Arch. Pharmacol. 310: 113–119.Google Scholar
  59. Jakobs, K. H., Aktories, K., and Schultz, G., 1981, Inhibition of adenylate cyclase by hormones and neurotransmitters, Adv. Cyclic Nucleotide Res. 14: 173–187.PubMedGoogle Scholar
  60. Jeacocke, S. A., and England, P. J., 1980, Phosphorylation of myosin light chains in perfused rat heart. Effect of adrenaline and increased cytoplasmic calcium ions, Biochem. J. 188: 763–768.PubMedGoogle Scholar
  61. Johnson, E. A., and McKinnon, M. G., 1956, Effect of acetylcholine and adenosine on cardiac cellular potentials, Nature 178: 1174–1175.PubMedGoogle Scholar
  62. Jones, L. R., Besch, H. R., Jr., Fleming, J. W., McConnaughey, M. M., and Watanabe, A. M., 1979, Separation of vesicles of cardiac sarcolemma from vesicles of cardiac sarcoplasmic reticulum, J. Biol. Chem. 254: 530–539.PubMedGoogle Scholar
  63. Kadoma, M., Sacktor, B., and Froehlich, J. P., 1980, Stimulation by cAMP and protein kinase of calcium transport in sarcoplasmic reticulum from senescent rat myocardium, Fed. Proc. 39: 2040.Google Scholar
  64. Kadoma, M., Froehlich, J., Reeves, J., and Sutko, J., 1982, Kinetics of sodium ion induced calcium ion release in calcium ion loaded cardiac sarcolemmal vesicles: Determination of initial velocities by stopped-flow spectrophotometry, Biochemistry 21: 1914–1918.PubMedGoogle Scholar
  65. Kaibuchi, K., Takai, Y., and Nishizuka, Y., 1981, Cooperative roles of various membrane phospholipids in the activation of calcium-activated, phospholipid-dependent protein kinase, J. Biol. Chem. 256: 7146–7149.PubMedGoogle Scholar
  66. Katoh, N., Wise, B. C., and Kuo, J. F., 1982, Phosphorylation of cardiac troponin-I and troponinT by cardiac phospholipid-sensitive Cat+-dependent protein kinase and inhibition of their phosphorylation by agents, Fed. Proc. 41: 1538.Google Scholar
  67. Katsuki, S., Arnold, W., and Murad, F., 1977, Effects of sodium nitroprusside, nitroglycerin, and sodium azide on levels of cyclic nucleotides and mechanical activity of various tissues, J. Cyclic Nucleotide Res. 3: 239–248.PubMedGoogle Scholar
  68. Katz, A. M., 1978, Role of the contractile proteins and sarcoplasmic reticulum in the response of the heart to catecholamines: An historical review, Adv. Cyclic Nucleotide Res. 11: 303–343.Google Scholar
  69. Keely, S. L., 1979, Prostaglandin E1 activation of heart cyclic AMP-dependent protein kinase: Apparent dissociation of protein kinase activation from increases in phosphorylase activity and contractile force, Mol. Pharmacol. 15: 235–245.PubMedGoogle Scholar
  70. Keely, S. L., and Corbin, J. D., 1977, Involvement of cyclic AMP-dependent protein kinase in the regulation of heart contractile force, Am. J. Physiol. 233: H269 - H275.PubMedGoogle Scholar
  71. Keely, S. L., and Lincoln, T. M., 1978, On the question of cyclic GMP as the mediator of the effects of acetylcholine on the heart, Biochim. Biophys. Acta 543: 251–257.PubMedGoogle Scholar
  72. Keely, S. L., Corbin, J. D., and Lincoln, T., 1977, Alpha adrenergic involvement in heart metabolism. Effects on adenosine cyclic 3’5’-monophosphate, adenosine 3’,5’-monophosphatedependent protein kinase, guanisine cyclic 3’,5’-monophosphate, and glucose transport, Mol. Pharmacol. 13: 965–975.PubMedGoogle Scholar
  73. Kelliher, G. J., and Conahan, T., 1980, Changes in vagal activity and response to muscarinic receptor agonists with age, J. Gerontol. 35: 842–849.PubMedGoogle Scholar
  74. Kerrick, W. G. L., Hoar, P. E., and Cassidy, P. S., 1980, Calcium-activated tension: The role of myosin light chain phosphorylation, Fed. Proc. 39: 1558–1563.PubMedGoogle Scholar
  75. Kessar, P., and Crompton, M., 1981, The a-adrenergic-mediated activation of Ca2+ influx into cardiac mitochondria, Biochem. J. 200: 379–388.PubMedGoogle Scholar
  76. Kirchberger, M. A., and Antonetz, T., 1982a, Phospholamban: Dissociation of the 22,000 molecular weight protein of cardiac sarcoplasmic reticulum into 11,000 and 5,000 molecular weight form, Biochem. Biophys. Res. Commun. 105: 152–156.PubMedGoogle Scholar
  77. Kirchberger, M. A., and Antonetz, T., 1982b, Calmodulin-mediated regulation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity in isolated cardiac sarcoplasmic reticulum, J. Biol. Chem. 257: 5685–5691.PubMedGoogle Scholar
  78. Kirchberger, M. A., and Wong, D., 1978, Calcium efflux from isolated cardiac sarcoplasmic reticulum, J. Biol. Chem. 253: 6941–6945.PubMedGoogle Scholar
  79. Kopp, S. J., and Barany, M., 1979, Phosphorylation of the 19,000 dalton light chain of myosin in perfused rat heart under the influence of negative and positive inotropic agents, J. Biol. Chem. 254:12, 007–12, 012.Google Scholar
  80. Kort, A. A., and Lakatta, E. G., 1981, Light scattering identifies diastolic myoplasmic Caz+ oscillation in diverse mammalian cardiac tissues, Circulation 64:, Part II, IV - 62.Google Scholar
  81. Kulchitskii, O. K., 1980, Effect of acetylcholine on the cyclic GMP level in the rat heart at different ages, Bull. Exp. Biol. Med. 90: 1237–1239.Google Scholar
  82. Kuo, J. F., 1975, Changes in activities of modulator of cyclic AMP-dependent and cyclic GMPdependent protein kinases in pancreas and adipose tissue from alloxan-induced diabetic rats, Biochem. Biophys. Res. Commun. 65: 1214–1220.PubMedGoogle Scholar
  83. Kuramoto, K., Matsushita, S., Mifune, J., Sakai, M., and Murakami, M, 1978, Electrocardiographic and hemodynamic evaluation of isoproterenol test in elderly ischemic heart disease, Jpn, Circ. J. 42: 955–960.Google Scholar
  84. Kuwayama, H., and Kanazawa, T., 1982, Purification of cardiac sarcolemmal vesicles: High sodium pump content and ATP-dependent, calmodulin-activated calcium uptake, J. Biochem. 91: 1419–1426.PubMedGoogle Scholar
  85. Lakatta, E. G., 1980, Age-related alterations in the cardiovascular response to adrenergic mediated stress, Fed. Proc. 39: 3173–3177.PubMedGoogle Scholar
  86. Lakatta, E. G., 1983, Determinants of cardiovascular performance: Modifications due to aging, J. Chronic Dis. 36: 15–30.PubMedGoogle Scholar
  87. Lakatta, E. G., and Lappe, D. L., 1981, Diastolic scattered light fluctuation, resting force and twitch force in mammalian cardiac muscle, J. Physiol. (Lond.) 315: 369–394.Google Scholar
  88. Lakatta, E. G., Gerstenblith, G., Angell, C. S., Shock, N. W., and Weisfeldt, M. L., 1975a, Prolonged contraction duration in aged myocardium, J. Clin, Invest. 55: 61–68.Google Scholar
  89. Lakatta, E. G., Gerstenblith, G., Angell, C. S., Shock, N. W. and Weisfeldt, M. L., 1975b, Diminished inotropic response of aged myocardium to catecholamine, Circ. Res. 36: 262–269.PubMedGoogle Scholar
  90. Lamers, J. M. J., Stinis, H. T., and DeJonge, H. R., 1981, On the role of cyclic AMP and Ca-calmodulin-dependent phosphorylation in the control of (Ca2+ + Mg2+)-ATPase of cardiac sarcolemmal, FEBS Lett. 127: 139–143.PubMedGoogle Scholar
  91. Langer, G. A., 1982, Sodium-calcium exchange in the heart, Ann. Rev. Physiol. 44: 435–449.Google Scholar
  92. LePeuch, C. J., Harich, J., and DeMaille, J. G., 1979, Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium-calmodulin-dependent phosphorylation, Biochemistry 18: 5150–5157.Google Scholar
  93. LePeuch, C. J., Guilleux, J. C., and DeMaille, J. G., 1980, Phospholamban phosphorylation in the perfused rat heart is not solely dependent on ß-adrenergic stimulation, FEBS Lett. 114: 165–168.Google Scholar
  94. Lincoln, T. M., and Keely, S. L., 1981, Regulation of cardiac cyclic AMP-dependent protein kinase, Biochim. Biophys. Acta 676: 230–244.PubMedGoogle Scholar
  95. Ling, W. Y., and Marsh, J. M., 1977, Re-evaluation of the role of cyclic adenosine 3’,5’-monophosphate and protein kinase in the stimulation of steroidogenesis by luteinizing hormone in bovine corpus luteum slices, Endocrinology 100: 1571–1578.PubMedGoogle Scholar
  96. London, G. M., Safar, M. E. E., Weiss, Y. A., and Milliez, P. L., 1976, Isoproterenol sensitivity and total body clearance of propranolol in hypertensive patients, J. Clin. Pharmacol. 16: 174–182.PubMedGoogle Scholar
  97. Metzger, H., and Lindner, E., 1982, Forskolin-dependent activation of an adenylate cyclase of rat heart membranes leads to an inhibition of a membrane-bound Na,K-ATPase, H. Z. Physiol. Chem. 363: 466–467.Google Scholar
  98. Mitchell, J. W., Mellgren, R. L., and Thomas, J. A., 1980, Phosphorylation of heart glycogen synthase by cAMP-dependent protein kinase. Regulatory effects of ATP, J. Biol. Chem. 255: 10368–10374.PubMedGoogle Scholar
  99. Mope, L., McClellan, G. B., and Winegrad, S., 1980, Calcium sensitivity of the contractile system and phosphorylation of troponin in hyperpermeable cardiac cells, J. Gen. Physiol. 75: 271–282.PubMedGoogle Scholar
  100. Morgan, M., Perry, S. V., and Ottaway, J., 1976, Myosin light-chain phosphatase, Biochem. J. 157: 687–697.PubMedGoogle Scholar
  101. Narayanan, N., 1981, Differential alterations in ATP-supported calcium transport activities of sarcoplasmic reticulum and sarcolemma of aging myocardium, Biochim. Biophys. Acta 678: 442–459.PubMedGoogle Scholar
  102. Narayanan, N., and Derby, J., 1982, Alterations in the properties of ß-adrenergic receptors of myocardial membranes in aging: Impairments in agonist-receptor interactions and guanine nucleotide regulation accompany diminished catecholamine-responsiveness of adenylate cyclase, Mech. Ageing Dey. 19: 127–139.Google Scholar
  103. Nawrath, H., 1976, Does cyclic GMP mediate the negative inotropic effect of acetylcholine in the heart? Nature 267: 72–74.Google Scholar
  104. Nicholls, D. G., 1978, The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria, Biochem. J. 176: 463–474.PubMedGoogle Scholar
  105. O’Connor, S. W., Scarpace, P. J., and Abrass, I. B., 1981, Age-associated decrease of adenylate cyclase activity in rat myocardium, Mech. Ageing Dey. 16: 91–95.Google Scholar
  106. Onorato, J. J., and Rudolph, S. A., 1981, Regulation of protein phosphorylation by inotropic agents in isolated myocardial cells, J. Biol. Chem. 256: 10697–10703.PubMedGoogle Scholar
  107. Patten, G. S., Filsell, O. H., and Clark, M. G., 1982, Epinephrine regulation of phosphofructokinase in perfused rat heart. A calcium ion-dependent mechanism mediated via a-receptors, J. Biol. Chem. 257: 9480–9486.PubMedGoogle Scholar
  108. Pemrick, S. M., 1980, The phosphorylated L2 light chain of skeletal myosin is a modifier of the actomyosin ATPase, J. Biol. Chem. 255: 8836–8841.PubMedGoogle Scholar
  109. Perry, S. V., 1979, The regulation of contractile activity in muscle, Biochem. Soc. Trans. 7: 596–617.Google Scholar
  110. Philipson, K. D., and Nishimoto, A. Y., 1982, Na+-CaZ+ exchange in inside-out cardiac sarcolemmal vesicles, J. Biol. Chem. 257: 5111–5117.PubMedGoogle Scholar
  111. Reinlib, L., Caroni, P., and Carafoli, E., 1981, Studies on heart sarcolemma: Vesicles of opposite orientation and the effect of ATP on the Na+/CaZ+ exchanger, FEBS Lett. 126: 74–76.Google Scholar
  112. Resink, T. J., and Gevers, W., 1981, Altered adenosine triphosphatase activities of natural acto- myosin from rat heart perfused with isoprenaline and ouabain, Cell Calcium 2: 105–123.Google Scholar
  113. Rinaldi, M. L., LePeuch, C. J., and DeMaille, J. G., 1981, The epinephrine induced activation of the cardiac slow Ca channel is mediated by the cAMP-dependent phosphorylation of calciductin, a 23,000 Mr sarcolemmal protein, FEBS Lett. 129: 277–281.PubMedGoogle Scholar
  114. Ritz-Gold, C. J., Cooke, R., Blumenthal, D. K., and Stull, J. T., 1980, Light chain phosphorylation alters the confirmation of skeletal muscle myosin, Biochem. Biophys. Res. Commun. 93: 209–214.PubMedGoogle Scholar
  115. Robertson, S. P., Johnson, J. D., Holroyde, M. J., Kranias, E. G., Potter, J. D., and Solaro, R. J., 1982, The effect of troponin I phosphorylation on the CaZ+-binding properties of the Ca-regulatory site of bovine cardiac troponin, J. Biol. Chem. 257: 260–263.PubMedGoogle Scholar
  116. Rodbell, M., 1980, The role of hormone receptors and GTP-regulatory proteins in membrane transduction, Nature 284: 17–22.PubMedGoogle Scholar
  117. Rodeheffer, R., Gerstenblith, G., Fleg, J. L., Lakatta, E. G., Clulow, J., Kollman, C. H., Weisfeldt, M. L., and Becker, L. C., 1981, The impact of age on gated blood pool scan (GBPS) measurements of LV volumes during exercise, Circulation 64, Part II, 243.Google Scholar
  118. Rubio, R., and Berne, R. M., 1969, Release of adenosine by the normal myocardium in dogs and its relationship to the regulation of coronary resistance, Circ. Res. 25: 407–415.PubMedGoogle Scholar
  119. Scholz, H., 1980, Effects of beta-and alpha-adrenoreceptor activators and adrenergic transmitter releasing agents on the mechanical activity of the heart, in: Handbook of Experimental Pharmacology, Vol. 54, Part I: Adrenergic Activators and Inhibitors ( L. Szckeres, ed.), pp. 651–733, Springer-Verlag, Berlin.Google Scholar
  120. Schrader, J., and Gerlach, E., 1976, Compartmentation of cardiac adenine nucleotides and formation of adenosine, Pfluegers Arch. 367: 129–135.Google Scholar
  121. Schrader, J., Rubio, R., and Berne, R. M., 1975, Inhibition of slow action potentials of guinea pig atrial muscle by adenosine: A possible effect on CaZ+ influx, J. Mol. Cell. Cardiol. 7: 427–433.PubMedGoogle Scholar
  122. Schrader, J., Bauman, J., and Gerlach, E., 1977, Adenosine as inhibitor of myocardial effects of catecholamines, Pfluegers Arch. 372: 29–35.Google Scholar
  123. Singh, J., and Flitney, F. W., 1981, Inotropic responses of the frog ventricle to dibutyryl cyclic AMP and 8-bromo cyclic GMP and related changes in endogenous cyclic nucleotide levels, Biochem. Pharmacol. 30: 1475–1481.PubMedGoogle Scholar
  124. Stern, M. D., Kort, A. A., Bhatnagar, G. M., and Lakatta, E. G., 1981, Laser scattering fluctuations in non-beating rat myocardium related to spontaneous myoplasmic calcium oscillations, Biophys. J. 33: 284a.Google Scholar
  125. Stewart, A. A., Ingebritsen, T. S., Manalan, A., Klee, C. D., and Cohen, P., 1982, Discovery of a CaZ+- and calmodulin-dependent protein phosphatase, FEBS Lett. 137: 80–84.PubMedGoogle Scholar
  126. Stull, J. T., 1980, Phosphorylation of contractile proteins in relation to muscle function, Adv. Cyclic Nucleotide Res. 13: 39–94.PubMedGoogle Scholar
  127. Sul, H. S., Cooper, R. H., McCullough, T. E., Pickett-Geis, C. A., Angelos, K. L., and Walsh, D. A., 1981, Regulation of cardiac phosphorylase kinase, in: Cold Spring Harbor Conference on Cell Proliferation, Vol. 8, Protein Phosphorylation ( Sul, H. S., Cooper, R. H., McCullough, T. E., Pickett-Geis, C. A., Angelos, K. L., and Walsh, D. A., eds.), pp. 343–356, Cold Spring Harbor Laboratory.Google Scholar
  128. Sulakhe, P. V., and St. Louis, P. J., 1977, Stimulation of calcium accumulation in cardiac sarcolemma by phosphorylase kinase, Biochem. J. 164: 457–459.PubMedGoogle Scholar
  129. Szmigielski, A., 1981, Modulation of the activity of endogenous protein kinase inhibitors in rat heart by the beta adrenergic receptor, Arch. Int. Pharmacol. 249: 64–71.Google Scholar
  130. Tada, M., and Katz, A. M., 1982, Phosphorylation of the sarcoplasmic reticulum and sarcolemma, Ann. Rev. Physiol. 44: 401–423.Google Scholar
  131. Tsien, R. W., 1978, Cyclic AMP and contractile activity in heart, Adv. Cyclic Nucleotide Res. 8: 363–420.Google Scholar
  132. Tzankoff, S. T., Fleg, J. L., Norris, A. H., and Lakatta, E. G., 1980, Age-related increase in serum catecholamine levels during exercise in healthy adult men, Physiologist 23: 50.Google Scholar
  133. Uchida, T., Bhatnagar, G. M., Lakatta, E. G., and Filburn, C. R., 1982, Alpha-adrenergic stimulation of 32PO4 labelling of phosphatidyl-inositol and phosphatidic acid in cultured rat heart cells, Fed. Proc. 41: 1523.Google Scholar
  134. Urthaler, F., Woods, W. T., Jones, T. N., and Walker, A. A., 1981, Effects of adenosine on mechanical performance and electrical activity in the canine heart, J. Pharmacol. Exp. Ther. 216: 254–260.Google Scholar
  135. Ventner, J. C., Ross, J., and Kaplan, N. 0., 1975, Lack of detectable change in cyclic AMP during the cardiac inotropic response to isoproterenol immobilized on glass beads, Proc. Natl. Acad. Sci. USA 72: 824–828.Google Scholar
  136. Vestal, R. E., Wood, A. J. J., and Shand, D. G., 1979, Reduced beta-adrenoreceptor sensitivity in the elderly, Clin. Pharmacol. Ther. 26: 181–186.PubMedGoogle Scholar
  137. Walsh, D. A., and Ashby, D. C., 1973, Protein kinases: Aspects of their regulation and diversity, Recent Prog. Horm. Res. 29: 329–359.PubMedGoogle Scholar
  138. Walsh, D. A., Ashby, D. C., Gonzabs, C., Calkins, D., Fisher, E. H., and Krebs, E. G., 1971, Purification and characterization of a protein inhibitor of adenosine 3’,5’-monophosphate dependent protein kinase, J. Biol. Chem. 246: 1977–1985.PubMedGoogle Scholar
  139. Walsh, D. A., Clippinger, M. S., Sivaramakrishnan, S., and McCullough, T. E., 1979, Cyclic adenosine monophosphate dependent and independent phosphorylation of sarcolemmal membrane proteins in perfused rat heart, Biochemistry 18: 871–877.PubMedGoogle Scholar
  140. Walsh, M. P., 1981, Calmodulin-dependent myosin light chain kinases, Cell Calcium 2: 333–352.PubMedGoogle Scholar
  141. Walsh, M. P., and Guilleux, J. C., 1981, Calcium and cyclic AMP-dependent regulation of myofibrillar calmodulin-dependent myosin light chain kinases from cardiac and skeletal muscles, Adv. Cyclic Nucleotides Res. 14: 375–390.Google Scholar
  142. Walsh, M. P., Bridenbaugh, R., Hartshorne, D. J., and Kerrick, W. G. L., 1982, Phosphorylation-dependent activated tension in skinned gizzard muscle fibers in the absence of Ca2+, J. Biol. Chem. 257: 5987–5990.PubMedGoogle Scholar
  143. Walsh, M. P., Vallet, B., Autric, F., and DeMaille, J G., 1979, Purification and characterization of bovine cardiac calmodulin-dependent myosin light chain kinase, J. Biol. Chem. 254: 12136–12144.PubMedGoogle Scholar
  144. Watanabe, A. M., and Besch, H. R., 1975, Interaction between cyclic adenosine monophosphate and cyclic guanosine monophosphate in guinea pig ventricular myocardium, Circ. Res. 37: 309–317.PubMedGoogle Scholar
  145. Watanabe, A. M., McConnaughey, M. M., Strawbridge, R. A., Fleming, J. W., Jones, L. R., and Besch, H. R., 1978, Musarinic cholinergic receptor modulation of ß-adrenergic receptor affinity for catecholamines, J. Biol. Chem. 253: 4833–4836.PubMedGoogle Scholar
  146. Watanabe, A. M., Jones, L. R., Monalan, A. S., and Besch, H. R., 1982, Cardiac autonomic receptors. Recent concepts from radiolabeled ligand-binding studies, Circ. Res. 50: 161–174.PubMedGoogle Scholar
  147. Webster, S., and Olsson, R. A., 1981, Adenosine regulation of canine cardiac adenylate cyclase, Biochem. Pharmacol. 30: 369–373.PubMedGoogle Scholar
  148. Wei, J. Y., Spurgeon, H. A., and Lakatta, E. G., 1980, Transmembrane action potential duration and contractile activation are lengthened in cardiac muscle of senescent rats, Clin. Res. 28: 619A.Google Scholar
  149. Westwood, S. A., and Perry, S. V., 1981, The effect of adrenaline on the phosphorylation of the P light chain of myosin and troponin I in the perfused rabbit heart, Biochem. J. 197: 185193.Google Scholar
  150. Wise, B. C., Glass, D. B., Chou, C. H. J., Raynor, R. L., Katoh, N., Schatzman, R. C., Turner, R. S., Kibler, R. F., and Kuo, J. F., 1982b, Phospholipid-sensitive Cat+-dependent protein kinase from heart. I. Purification and general properties, J. Biol. Chem. 257: 8481–8488.PubMedGoogle Scholar
  151. Wolff, H., and Hofmann, F., 1980, Purification of myosin light chain kinase from bovine cardiac muscle, Proc. Natl. Acad. Sci. USA 77: 5852–5855.Google Scholar
  152. Wrenn, R. W., and Kuo, J. F., 1981, Cyclic GMP-dependent phosphorylation of an endogenous protein from rat heart, Biochem. Biophys. Res. Commun. 101: 1274–1280.PubMedGoogle Scholar
  153. Yin, F. C. P., Spurgeon, H. A., Raizes, G. S., Greene, H. L., Weisfeldt, M. L., and Shock, N. W., 1976, Age-associated decrease in chronotropic response to isoproterenol, Circulation 54: Suppl. II, II - 167.Google Scholar
  154. Yin, F. C. P., Spurgeon, H. A., Greene, H. L., Lakatta, E. G., and Weisfeldt, M. L., 1979, Age-associated decrease in heart rate response to isoproterenol in dogs, Mech. Ageing Dev. 10: 17–25.PubMedGoogle Scholar
  155. Yin, F. C. P., Weisfeldt, M. L., and Milnor, W. R. 1981, Role of aortic input impedance in the decreased cardiovascular response to exercise with aging in dogs, J. Clin. Invest. 68: 28–38.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Charles R. Filburn
    • 1
  • Edward G. Lakatta
    • 1
  1. 1.Laboratory of Molecular Aging and Cardiovascular Section, National Institute on Aging, National Institutes of Health, Gerontology Research CenterBaltimore City HospitalsBaltimoreUSA

Personalised recommendations