Metabolism of the Brain a Measure of Cellular Function in Aging

  • Edythe D. London


Because of the close relationships between cerebral functional activity and measures of cerebral blood flow and metabolism, investigators have used these measures to gain information about altered function in various experimental and pathologic states. This chapter reviews information regarding the associations between cerebral metabolism, blood flow, and function. Also reviewed are results from in vitro studies of oxidative metabolism and glucose metabolism in aging animals. Techniques for assessment of cerebral blood flow and oxidative metabolism in vivo are described, as are results obtained in animal and human studies of age differences in these parameters. The possible advantage of performing measurements on subjects in activated states, rather than the resting state, is discussed.


Cerebral Blood Flow Glucose Utilization Inferior Colliculus Regional Cerebral Blood Flow Cerebral Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpert, N. M., Ackerman, R. H., Correia, J. A., Grotta, J. C., Chang, J. Y., and Taveras, J. M., 1979, Measurement of cerebral blood flow and oxygen metabolism in transverse section—Preliminary results, Acta Neurol. Scand. Suppl. 72, 60: 196–197.Google Scholar
  2. Arenberg, D., 1978, Differences and changes with age in the Benton Visual Rentention Test, J. Gerontol. 33: 534–540.PubMedCrossRefGoogle Scholar
  3. Ball, M. J., 1978, Topographic distribution of neurofibrillary tangles and granulovacuolar degeneration in hippocampal cortex of aging and demented patients. A quantitative study, Acta Neuropathol. (Berl.) 42: 73–80.CrossRefGoogle Scholar
  4. Bessell, E. M., Foster, A. B., and Westwood, J. H., 1972, The use of deoxyfluoro-D-glucopyranoses and related compounds in a study of yeast hexokinase specificity, Biochem. J. 128: 199–204.PubMedGoogle Scholar
  5. Brody, H., 1976, An examination of cerebral cortex and brainstem aging, in: Neurobiology of Aging (Aging, Vol. 13, R. D. Terry and S. Gershon, eds.), pp. 177–181, Raven Press, New York.Google Scholar
  6. Chainy, G. B. N., and Kanungo, M. S., 1978, Induction and properties of pyruvate kinase of the cerebral hemisphere of rats of various ages, J. Neurochem. 30: 419–427.PubMedCrossRefGoogle Scholar
  7. Cho, A. K., Hasslett, W. L., and Jenden, D. J., 1962, The peripheral actions of oxotremorine, a metabolite of tremorine, J. Pharmacol. Exp. Ther. 138: 249–257.PubMedGoogle Scholar
  8. Connor, J. R., Beban, S. E., Hansen, B., Hopper, P., and Diamond, M. C., 1980, Dendritic increases in the aged rat somatosensory cortex, Abstr. Soc. Neurosci. 6: 739.Google Scholar
  9. Dam, M., and London, E. D., 1983, Glucose utilization in the Papez circuit: Effects of oxotremarine and scopolamine, Submitted.Google Scholar
  10. Dam, M., and London, E. D., 1983, Glucose utilization in the Papez circuit: Effects of oxotremorine and scopolamine, Brain Res.,in press.Google Scholar
  11. Dastur, D. K., Lane, M. H., Hansen, D. B., Kety, S. S., Butler, R. N., Perlin, S., and Sokoloff, L, 1963, Effects of aging on cerebral circulation and metabolism in man, in: Human Aging: A Biological and Behavioral Study (J. E. Birren, R. N. Butler, S. G. Greenhouse, L. Sokoloff, and M. R. Yarow, eds.), Public health Service Publication No. 986, pp. 57–76, U. S. Government Printing Office, Washington, D.C.Google Scholar
  12. Des Rosiers, M. H., Kennedy, C., Patlak, C. S., Pettigrew, K. D., Sokoloff, L., and Reivich, M., 1974, Relationship between local cerebral blood flow and glucose utilization in the rat, Neurology 24: 389.Google Scholar
  13. Dow-Edwards, D., Dam, M., Peterson, J. M., Rapoport, S. I., and London, E. D., 1981, Effect of oxotremorine on local cerebral glucose utilization in motor system regions of the rat brain, Brain Res. 226: 281–289.PubMedCrossRefGoogle Scholar
  14. Duara, R., Margolin, R. A., Robertson-Tchabo, E. A., London, E. D., Schwartz, M., Renfrew, J. W., Kessler, R., Sokoloff, L., Ingvar, D. H., and Rapoport, S. I., 1982, Regional cerebral glucose utilization in healthy men at different ages, Neurology 32: A166–A167.Google Scholar
  15. Duara, R., London, E. D., and Rapoport, S. I., 1984, Structural and metabolic changes in the aging brain, in: Handbook of the Biology of Aging,2nd ed. (C. E. Finch and E. Schneider, eds.), in press, Van Nostrand-Reinhold Company, New York.Google Scholar
  16. Duffy, T. E., Cavazzuti, M., Gregoire, N. M., Cruz, N. F., Kennedy, C., and Sokoloff, L, 1979, Regional cerebral glucose utilization in newborn Beagle dogs, Trans. Am. Soc. Neurochem. 10: 171.Google Scholar
  17. Farkas, T., Reivich, M., Alavi, A., Greenberg, J. H., Fowler, J. S., MacGregor, R. R., Christman, D. R., and Wolf, A. P., 1980, The application of F2-deoxy-2-fluoro-D-glucose and positron emission tomography in the study of psychiatric conditions, in: Cerebral Metabolism and Neural Function ( J. V. Passonneau, R. A. Hawkins, W. D. Lust, and F. A. Welsh, eds.), pp. 403–408, Waverly Press, Baltimore.Google Scholar
  18. Fazekas, J. F., Alman, R. W., and Bessman, A. N., 1952, Cerebral physiology of the aged, Am. J. Med. Sci. 223: 245–257.PubMedCrossRefGoogle Scholar
  19. Feldman, M. L., and Dowd, C., 1975, Loss of dendritic spines in aging cerebral cortex, Anat. Embryol (Berl.) 148: 279–301.CrossRefGoogle Scholar
  20. Ferris, S. H., de Leon, M. J., Wolf, A. P., Farkas, T., Christman, D. R., Reisberg, B., Fowler, J. S., MacGregor, R., Goldman, A., George, A. E., and Rampal, S., 1980, Positron emission tomography in the study of aging and senile dementia, Neurobiology of Aging 1: 127–131.CrossRefGoogle Scholar
  21. Fox, J. H., Parmacek, M. S., and Patel-Mandlik, K., 1975, Effect of aging on brain respiration and carbohydrate metabolism of Syrian hamsters, Gerontologia 21: 224–230.PubMedCrossRefGoogle Scholar
  22. Frackowiak, R. S. J., Lenzi, G. L., Jones, T., and Heather, J. D., 1980, Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 150 and positron emission tomography: Theory, procedure and normal values, J. Comput. Assist. Tomog. 4: 727–736.CrossRefGoogle Scholar
  23. Freyhan, F. A., Woodford, R. B., and Kety, S. S., 1951, Cerebral blood flow and metabolism in psychoses of senility, J. Nerv. Ment. Dis. 113: 449–456.PubMedGoogle Scholar
  24. Fujishima, M., 1967, Brain circulation studies in cases with cerebrovascular diseases by externalGoogle Scholar
  25. counting of intravenously injected RISA, Fukuoka Acta Med. 58:194–216.Google Scholar
  26. Fujishima, M., and Omae, T., 1980, Brain flow and mean transit time as related to aging, Gerontology 26: 104–107.PubMedCrossRefGoogle Scholar
  27. Garbus, J., 1955, Respiration of brain homogenates of old and young rats, Am. J. Physiol. 183: 618–619.Google Scholar
  28. Garden, A. S., Ohata, M., Rapoport, S. I., and London, E. D., 1980, Age-associated decrease in local cerebral glucose utilization (LCGU) in the Beagle, Abst. Soc. Neurosci. 6: 768.Google Scholar
  29. Garfunkel, J. M., Baird, H. W., III, and Ziegler, J., 1954, The relationship of oxygen consumption to cerebral functional activity, J. Pediat. 44: 64–72.PubMedCrossRefGoogle Scholar
  30. Gibson, G. E., Peterson, C., and Jenden, D. J., 1981, Brain acetylcholine synthesis declines with senescence, Science 213: 674–676.PubMedCrossRefGoogle Scholar
  31. Goodrick, C. L., 1968, Learning, retention, and extinction of a complex maze habit for mature-young and senescent Wistar albino rats, J. Gerontol. 25: 298–304.CrossRefGoogle Scholar
  32. Goodrick, C. L., 1972, Learning by mature-young and aged Wistar albino rats as a function of test complexity, J. Gerontol. 27: 353–357.PubMedCrossRefGoogle Scholar
  33. Hagberg, B., and Ingvar, D. H., 1976, Cognitive reduction in presenile dementia related to abnormalities of the cerebral blood flow, Br. J. Psychiat. 128: 209–222.CrossRefGoogle Scholar
  34. Hinds, J. W., and McNelly, N. A., 1980, Correlation of aging changes in the olfactory epithelium and olfactory bulb of the rat, Abstr. Soc. Neurosci. 6: 739.Google Scholar
  35. Ingvar, D. H., Lassen, N. A., 1979, Activity distribution in the cerebral cortex in organic dementia as revealed by measurements of regional cerebral blood flow, in:Brain Function in Old Age (F. Hochmeister and C. Müller, eds.), pp. 268–277, Springer Verlag, New York.Google Scholar
  36. Inukai, T., 1928, On the loss of Purkinje cells with advancing age, from the cerebellar cortex of the albino rat, J. Comp. Neurol. 45: 1–31.CrossRefGoogle Scholar
  37. Kennedy, C., Sakurada, O., Shinohara, M., Jehle, J., and Sokoloff, L., 1978, Local cerebral glucose utilization in the normal conscious macaque monkey, Ann. Neurol. 4: 293–301.PubMedCrossRefGoogle Scholar
  38. Kety, S. S., 1956, Human cerebral blood flow and oxygen consumption as related to aging, J. Chron. Dis. 3: 478–486.PubMedCrossRefGoogle Scholar
  39. Kety, S. S., 1957, The general metabolism of the brain in vivo, in: Metabolism of the Nervous System (International Neurochemical Symposium II, Denmark, 1956, D. Richter, ed.), pp. 221–237, Pergamon Press, New York.Google Scholar
  40. Kety, S. S., and Schmidt, C., 1945, The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations, Am. J. Physiol. 143: 53–66.Google Scholar
  41. Kety, S. S., and Schmidt, C. F., 1948, The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure and normal values, J. Clin, Invest. 27: 476–483.CrossRefGoogle Scholar
  42. Kuhl, D. E., Metter, E. J., Reige, W. H., and Phelps, M. E., 1982, Effects of human aging on patterns of local cerebral glucose utilization determined by the [18F] fluorodeoxyglucose method, J. Cerebral Blood Flow and Metab. 2: 163–171.CrossRefGoogle Scholar
  43. Landau, W. M., Freygang, W. H., Rowland, L. P., Sokoloff, L., and Kety, S. S., 1955, The local circulation of the living brain; values in the unanesthetized and anesthetized rat, Trans. Am. Neurol. Assoc. 80: 125–129.Google Scholar
  44. Lassen, N. A., 1959, Crebral blood flow and oxygen consumption in man, Physiol. Rev. 39: 183238.Google Scholar
  45. Lassen, N. A., 1974, Control of cerebral circulation in health and disease, Circ. Res. 34: 749760.Google Scholar
  46. Lassen, N. A., and Ingvar, D. H., 1972, Radioisotope assessment of regional cerebral blood flow, Prog. Nucl. Med. 1: 376–409.PubMedGoogle Scholar
  47. Lassen, N. A., Munck, O., and Tottey, E. R., 1957, Mental function and cerebral oxygen consumption in organic dementia, A.M.A. Arch. Neurol. Psychiat. 77: 126–133.CrossRefGoogle Scholar
  48. Lassen, N. A., Feinberg, I., and Lane, M. H., 1960, Bilateral studies of cerebral oxygen uptake in young and aged normal subjects and in patients with organic dementia, J. Clin. Invest. 39: 491–500.PubMedCrossRefGoogle Scholar
  49. Lassen, N. A., Hoedt-Rasmussen, K., Sorensen, S. C., Skinhoj, E., Cronquist, S., Forss, B., and Ingvar, D. H., 1963, Regional cerebral blood flow in man determined by krypton,85 Neurology 13: 719–727.PubMedCrossRefGoogle Scholar
  50. Lassen, N. A., Ingvar, D. H., and Skinhoj, E., 1978, Brain function and blood flow, Sci. Am. 239: 62–71.PubMedCrossRefGoogle Scholar
  51. Le Ponchin-Lafitte, M., and Rapin, J. R, 1980, Age-associated changes in deoxyglucose uptake in whole brain, Gerontology 26: 265–269.CrossRefGoogle Scholar
  52. Lévy, J., and Michel-Ber, E., 1965, Sur le métabolite de la trémorine, l’oxotrémorine, Therapie 20: 265–267.Google Scholar
  53. London, E. D., Nespor, S. M., Ohata, M., and Rapoport, S. I., 1981, Local cerebral glucose utilization during development and aging of the Fischer-344 rat, J. Neurochem. 37: 217221.Google Scholar
  54. London, E. E., Mahone, P., Rapoport, S. I., and Dam, M., 1982, Effect of age on oxotremorineinduced stimulation of local cerebral glucose utilization, Fed. Proc. 41: 1323.Google Scholar
  55. London, E. D., Ohata, M., Takei, H., French, A. W., and Rapoport, S. I., 1983, Regional cerebral metabolic rate for glucose in Beagle dogs of different ages, Neurobiol. Aging,in press.Google Scholar
  56. Lying-Tunell, U., Lindblad, B. S., Malmlund, H. O., and Persson, B., 1980, Cerebral blood flow and metabolic rate of oxygen, glucose, lactate, ketone bodies and amino acids. I. Young and old normal subjects, Acta Neurol. Scandinay. 62: 265–275.CrossRefGoogle Scholar
  57. Maggi, A., Schmidt, M. J., Ghetti, B., and Enna, S. J., 1979, Effect of aging on neurotransmitter receptor binding in rat and human brain, Life Sci. 24: 367–374.PubMedCrossRefGoogle Scholar
  58. Mallett, B. L., and Veall, N., 1963, Investigation of cerebral blood flow in hypertension, using radioactive-xenon inhalation and extracranial recording, Lancet 1: 1081–1082.PubMedCrossRefGoogle Scholar
  59. Marcus, M. L., Busija, D. N., Bischof, C. J., and Heistad, D. D., 1981, Methods for measurement of cerebral blood flow, Fed. Proc. 40: 2306–2310.Google Scholar
  60. Mcllwain, H., Anguiano, G., and Cheshire, J. D., 1951, Electrical stimulation in vitro of the metabolism of glucose by mammalian cerebral cortex, Biochem. J. 50: 12–18.Google Scholar
  61. Meier-Ruge, W., Reichlmeier, K., and Iwangoff, P., 1976, Enzymatic and enzyme histochemical changes of the aging animal brain and consequences for experimental pharmacology on aging, in: Neurobiology of Aging (Aging, Vol. 3, R. D. Terry and S. Gershon, eds.), pp. 379–388, Raven Press, New York.Google Scholar
  62. Melamed, E., Lavy, S., Bentin, S., Cooper, G., and Rinot, Y., 1980, Reduction in cerebral blood flow during normal aging in man, Stroke 11: 31–35.PubMedCrossRefGoogle Scholar
  63. Mervis, R. F., 1978, Structural alterations in neurons of aged canine neocortex: A Golgi study, Exp. Neurol. 62: 417–432.PubMedCrossRefGoogle Scholar
  64. Naritomi, H., Meyer, J. S., Sakai, F., Yamaguchi, F., and Shaw, T., 1979, Effects of advancing age on regional cerebral blood flow: Studies in normal subjects and subjects with risk factors for atherothrombotic stroke, Arch. Neurol. 36: 410–416.PubMedCrossRefGoogle Scholar
  65. Nilsson, B., Rehncrona, S., and Siesjö, B. K., 1978, Coupling of cerebral metabolism and blood flow in epileptic seizures, hypoxia and hypoglycaemia, Ciba Found. Symp. 56: 199–218.PubMedGoogle Scholar
  66. Obrist, W. D., 1979, Cerebral circulatory changes in normal aging and dementia, in: Bayer Symposium VII: Brain Function in Old Age ( F. Hoffmeister, C. Millier, and H. P. Krause, eds.), pp. 278–287, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  67. Obrist, W. D., Thompson, H. K., King, C. H., and Wang, H. S., 1967, Determination of regional cerebral blood flow by inhalation of 133-xenon, Circ. Res. 20: 124–135.PubMedCrossRefGoogle Scholar
  68. Orbist, W. D., Chivian, E., Conqvist, S., and Ingvar, D. H., 1970, Regional cerebral blood flow in senile and presenile dementia, Neurology 20: 315–322.CrossRefGoogle Scholar
  69. Ohata, M., Sundaram, U., Fredericks, W. R., London, E. D., and Rapoport, S. I., 1981, Regional cerebral blood flow during development and ageing of the rat brain, Brain 104: 319–332.PubMedCrossRefGoogle Scholar
  70. Osetowska, E., 1966, Étude anatomorphathologique sur le cerveau de chiens seniles, in: Proceedings of the Fifth International Congress of Neuropathology ( F. Luthy and A. Bischoff, eds.), pp. 497–502, Excerpta Medica Foundation, Amsterdam.Google Scholar
  71. Owen, O. E., Morgan, A. P., Kemp, H. G., Sullivan, J. M., Herrera, M. G., and Cahill, G. F., 1967, Brain metabolism during fasting, J. Clin. Invest. 46: 1589–1595.PubMedCrossRefGoogle Scholar
  72. Parmacek, M. S., Fox, J. H., Harrison, W. H., Garron, D. C., and Swenie, D., 1979, Effect of aging on brain respiration and carbohydrate metabolism of CBF1 mice, Gerontology 25: 185–191.PubMedCrossRefGoogle Scholar
  73. Patel, M. S., 1977, Age-dependent changes in the oxidative metabolism in the rat brain, J. Gerontol. 32: 643–646.PubMedCrossRefGoogle Scholar
  74. Patterson, J. L., Jr., Heyman, A., and Nichols, F. T., Jr., 1950, Cerebral blood flow and oxygen consumption in neurosyphills, J. Clin. Invest. 29: 1327–1334.PubMedCrossRefGoogle Scholar
  75. Pauli, B., and Luginbuhl, H., 1971, Fluorescenzmikroskopische Untersuchungen der cerebralen Amyloidose bei alten Hunden and senilen Menschen, Acta Neuropathol. (Berl.) 19: 12 1128.Google Scholar
  76. Peng, M.-T., Peng, Y.-I., and Chen, F.-N., 1977, Age-dependent changes in the oxygen consumption of the cerebral cortex, hypothalamus, hippocampus, and amygdaloid in rats, J. Gerontol. 32: 517–522.PubMedCrossRefGoogle Scholar
  77. Phelps, M. E., Hoffman, E. J., Huang, S. C., and Kuhl, D. E., 1978, ECAT: A new computerized tomographic imaging system for positron emitting radiopharmaceuticals, J. Nucl. Med. 19: 635–647.PubMedGoogle Scholar
  78. Posner, J. P., 1973, Newer techniques of cerebral blood flow measurement, in: Cerebral Vascular Diseases: Eighth Conference ( F. H. McDowell and R. W. Brennan, eds.), pp. 145–162, Grune and Stratton, New York.Google Scholar
  79. Puri, S. K., and Volicer, L., 1977, Effect of aging on cyclic AMP levels and adenylate cyclase and phosphodiesterase activities in the rat corpus striatum, Mech, Aging Dev. 6: 53–58.CrossRefGoogle Scholar
  80. Raichle, M. E., Grubb, R., Gado, M. H., Eichling, J. O., and Ter-Pogossian, M. M., 1976, Correlation between regional cerebral blood flow and oxidative metabolism. In vivo studies in man, Arch. Neurol. 33: 523–526.PubMedCrossRefGoogle Scholar
  81. Rapoport, S. I., and London, E. D., 1982, Brain metabolism during aging of the rat and dog: Implications for brain function in man during aging and dementia, in: Neural Aging and its Implications in Human Neurological Pathology (Aging, Vol. 18, R. D. Terry, C. L. Bolis, and G. Toffano, eds.), pp. 79–88, Raven Press, New York.Google Scholar
  82. Reiner, J. M., 1947, The effect of age on carbohydrate metabolism of tissue homogenates, J. Gerontol. 2: 315–320.PubMedCrossRefGoogle Scholar
  83. Reivich, M., Jehle, J. W., Sokoloff, L., and Kety, S. S., 1969, Measurement of regional cerebral blood flow with (14C)-antipyrine in awake cats, J. Appl. Physiol. 27: 296–300.PubMedGoogle Scholar
  84. Reivich, M., Kuhl, D., Wolf, A., Greenberg, J., Phelps, M., Ido, T., Casella, V., Fowler, J., Hoffman, E., Alavi, A., Som, P., and Sokoloff, L., 1979, The [18F]Fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man, Circ. Res. 44: 127137.Google Scholar
  85. Roy, C. W., and Sherrington, C. S., 1980, On the regulation of the blood supply of the brain, J. Physiol. (London) 11: 85–108.Google Scholar
  86. Ryder, E., and Izquierdo, P., 1979, Enzymatic profile of mitochondria isolated from selected brain regions of young adult and one year old rats, Fed. Proc. 38: 516.Google Scholar
  87. Sakurada, O., Kennedy, C., Jehle, J., Brown, J. D., Carbin, G. L., and Sokoloff, L., 1978, Measurement of local cerebral blood flow with iodo [14C] antipyrine, Am. J. Physiol. 234: H59 — H66.PubMedGoogle Scholar
  88. Sanadi, D. R., 1977, Metabolic changes and their significance in aging, in Handbook of the Biology of Aging ( C. E. Finch and L. Hayflick, eds.), pp. 73–98, Van Nostrand-Reinhold, New York.Google Scholar
  89. Scheibel, M. E., Lindsay, R. D., Tomiyasu, U., and Scheibel, A. B., 1975 Progressive dendritic changes in aging human cortex, Exp. Neurol. 47: 392–403.PubMedCrossRefGoogle Scholar
  90. Scheinberg, P., Blackburn, I., Rich, M., and Saslaw, M., 1953, Effects of aging of cerebral circulation and metabolism, Arch. Neurol. Psych. 70: 77–85.CrossRefGoogle Scholar
  91. Schieve, J. F., and Wilson, W. P., 1953, The influence of age, anaesthesia and cerebral arteriosclerosis on cerebral vascular activity to Coe, Am. J. Med. 15: 171–174.PubMedCrossRefGoogle Scholar
  92. Schwark, W. S., Singhal, R. L., and Ling, G. M., 1971, Metabolic control mechanisms in mammalian systems. Regulation of pyruvate kinase in the cerebral cortex, J. Neurochem. 18: 123–134.PubMedCrossRefGoogle Scholar
  93. Siesjö, B. K., 1978, Brain Energy Metabolism, John Wiley and Sons, Chichester.Google Scholar
  94. Sitaram, N., Weingartner, H., and Gillin, J. C., 1978, Human serial learning: Enhancement with arecholine and choline and impairment with scopolamine, Science 201: 274–276.PubMedCrossRefGoogle Scholar
  95. Smith, C. B., 1981, Age-related changes in local rates of cerebral glucose utilization in the rat, in: Brain Neurotransmitters and Receptors in Aging and Age-Related Disorders (Aging, Vol. 17, S. J. Enna, T. Samorajski, and B. Beer, eds.), pp. 195–201, Raven Press, New York.Google Scholar
  96. Smith, C. B., Goochee, C., Rapoport, S. I., and Sokoloff, L., 1980, Effects of ageing on local rates of cerebral glucose utilization in the rat, Brain 103:351–365.Google Scholar
  97. Sokoloff, L., 1960, The metabolism of the central nervous system in vivo, in: Handbook of Physiology; Neurophysiology ( J. Field, H. W.Magoun, V. E. Hall, eds.), Vol. 3, pp. 1843–1864, American Physiological Society, Washington, D. C.Google Scholar
  98. Sokoloff, L., 1972, Circulation and energy metabolism of the brain, in: Basic Neurochemistry ( 2nd edition, G. J. Siegel, R. W. Albers, R. Katzman, and B. W. Agranoff, eds.), pp. 338–413, Little Brown and Co., Boston.Google Scholar
  99. Sokoloff, L., 1977, Relation between physiological function and energy metabolism in the central nervous system, J. Neurochem. 29: 13–26.PubMedCrossRefGoogle Scholar
  100. Sokoloff, L., 1978, Local cerebral energy metabolism: Its relationships to local functional activity and blood flow, in: Cerebral Vascular Smooth Muscle and its Control (Ciba Foundation Symposium 56), pp. 171–197, Elsevier—Excerpta Medica—North-Holland, Amsterdam.Google Scholar
  101. Sokoloff, L., 1979a, Effects of normal aging on cerebral circulation and energy metabolism, in: Brain Function in Old Age ( Bayer Symposium VII, F. Hoffmeister and C. Mflller, eds.), pp. 367–380, Springer Verlag, New York.CrossRefGoogle Scholar
  102. Sokoloff, L., 1979b, The [14C]deoxyglucose method: Four years later, in: Cerebral Blood Flow and Metabolism (Acta Neurologica Scandinavica, Suppl. 72, Vol. 60, International Symposium on Cerebral Blood Flow and Metabolism, Tokyo, 1979, F. Gotoh, H. Nagai, and Y. Tazaki, eds.), pp. 640–649, Munksgaard, Copenhagen.Google Scholar
  103. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., and Shinohara, M., 1977, The 14C-deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat, J. Neurochem. 28: 897–916.PubMedCrossRefGoogle Scholar
  104. Strong, R., Hicks, P., Hsu, L., Bartus, R. T., and Enna, S. J., 1980, Age-related alterations in the rodent brain cholinergic system and behavior, Neurobiol. Aging 1: 59–62.PubMedCrossRefGoogle Scholar
  105. Sveinsdottir, E., 1965, Clearance curves of Kr-85 or Xe-133 considered as sum of mono-exponential outwash functions. Description of a computer program for the simple case of only two compartments, Acta Neurol. Scand. 41:Suppl. 14: 69–71.Google Scholar
  106. Takagaki, G., 1968, Control of aerobic glycolysis and pyruvate kinase activity in cerebral cortex slices, J. Neurochem. 15: 903–907.PubMedCrossRefGoogle Scholar
  107. Ter-Pogossian, M. M., Eichung, J. O., Davis, D. O., Welch, M. J., and Metzger, J. M., 1969, The determination of regional cerebral blood flow by means of water labeled with radioactive oxygen-15, Radiology 93: 31–40.PubMedGoogle Scholar
  108. Toga, A. W., and Collins, R. C., 1981, Metabolic response of optic centers to visual stimuli in the albino rat: Anatomical and physiologic considerations, J. Comp. Neurol. 199: 443–464.PubMedCrossRefGoogle Scholar
  109. Vaughan, D. W., 1977, Age-related deterioration of pyramidal cell basal dendrites in rat auditory cortex, J. Comp. Neurol. 171: 501–516.PubMedCrossRefGoogle Scholar
  110. Vaughan, D., and Peters, A., 1974, Neuroglial cells in the cerebral cortex of rats from young adulthood to old age: An electron microscope study, J. Neurocytol. 3: 405–429.PubMedCrossRefGoogle Scholar
  111. Vitorica, J., Andrés, A.,Satrústegui, J., and Machado, A., 1981, Age-related quantitative changes in enzyme activities of rat brain, Neurochem. Res. 6: 127–136.Google Scholar
  112. Von Braunmuhl, A. V., 1956, “Kongophile Angiopathie” and “Senile Plaques” bei greisen Hunden, Arch. Psychiatr. Nervenkr. 194: 396–414.Google Scholar
  113. Weiss, B., Greenberg, L., and Cantor, E., 1979, Age-related alterations in the development of adrenergic denervation supersensitivity, Fed. Proc. 38: 1915–1921.PubMedGoogle Scholar
  114. Wisniewski, H., Johnson, A. B., Raine, C. S., Kay, W. J., and Terry, R. D., 1970, Senile plaques and cerebral amyloidosis in aged dogs. A histochemical and ultrastructural study, Lab. Invest. 23: 287–296.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Edythe D. London
    • 1
  1. 1.National Institute on Drug Abuse, Addiction Research Center, and National Institute on Aging, Gerontology Research CenterBaltimore City HospitalsBaltimoreUSA

Personalised recommendations