Skip to main content

The Effect of Chronic Ethanol Consumption on the Rate of Whole Animal and Perfused Liver Oxygen Consumption

  • Chapter
Alcohol and Aldehyde Metabolizing Systems-IV

Summary

In order to assess the thyroid state of rats chronically treated with an alcohol containing diet, the rate of minimal oxygen consumption, the level of serum thyroid hormones and the rate of perfused liver oxygen consumption were measured. In no case was there any evidence for alcohol induced systemic or hepatic hyperthyroidism or hypermetabolism.

Observations of increased rates of oxygen consumption in liver slices from rats which had chronically consumed an ethanol containing diet led Israel and his co-workers to suggest that a condition of thyroid mediated hypermetabolism is present in livers of chronically alcoholic rats (Videla et al., 1973; Israel et al., 1975). This observation was further supported by observations of increased ouabain sensitivity of liver slice respiration, increased levels of ∝-glycerophosphate dehydrogenase, an increased uptake of thyroxine by liver slices, and increased rates of perfused liver oxygen consumption in the presence of ethanol (Videla et al., 1973; Israel et al., 1975; Thurman et al., 1976). It was consecutively proposed that the increased rates of oxygen consumption in livers from rats chronically fed alcohol resulted in hypoxic degeneration (Israel et al., 1975). However, with the exception of the observation of increased oxygen uptake by chronically alcoholic livers perfused in the presence of ethanol (Thurman et al., 1976), the findings that supported these hypotheses have not been observed in subsequent studies employing hepatocytes from alcoholic rats (Cederbaum et al.., 1978; Gordon, 1977; Christensen et al., 1977). In spite of the uncertainties raised by these later studies, clinical trials have been conducted to test the therapeutic effectiveness of the antithyroid drug, propylthiouracil, in treating alcoholic hepatitis (Orrego et al., 1979). The reports of these trials indicate reduced morbidity for patients admitted with sub-normal triiodothyronine levels, suggesting the theoretical basis for improvement is poorly understood. Since, uncertainties in the original observations have been extended to a clinical setting, it seems important that the contribution of thyroid or non-thyroid mediated hepatic hypermetabolism to alcoholic liver disease be reassessed as quickly as possible. Therefore, in order to delineate the systemic and hepatic thyroid state of chronic alcoholic rats, the rate of minimal oxygen consumption, serum thyroid hormone levels, and the rate of perfused liver oxygen consumption have been measured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Burman, K.D., D. Strum, R.C. Dimond, Y. Djuh, F.D.-.Wright, J.M. Earll, and L. Wartofsky, 1977, A radioimmunoassay for 3,3’-L- diiodothyronine (3,3’’T 2), J. Clin. Endocrinol, Metab., 45: 339.

    Google Scholar 

  • Cederbaum, A.I., E. Dicker, C.S. Lieber and E. Rubin, 1978,. Ethanol oxidation by isolated hepatocytes from ethanol-treated and control rats; factors contributing to the metabolic adaptation after chronic ethanol consumption, Biochem.. Pharmacol., 27: 7.

    Google Scholar 

  • Christensen, E., J. Craig, R. Harris, J. Higgins, H. Edmondson, and R. Veech, 1977, Effect of chronic alcohol and oxygen tension on the development of hepatic necrosis in rat, in: Alcohol and Aldehyde Metabolizing Systems, R.G. Thurman, J.R. Williamson, H.R. Drott, and B. Chance, eds., Academic Press,, New York and London.

    Google Scholar 

  • Denckla, W..D.-, 1973, Minimal oxygen consumption as an index of thyroid status: standardization of method, Endocrinology, 93: 61.

    Google Scholar 

  • Denckla, W.D., 1974, Role of the pituitary and thyroid glands in the decline of minimal 02 consumption with age, J. Clin.. Invest.., 53: 572.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, E.R., 1977, ATP metabolism in an ethanol-induced fatty liver, Alcoholism: Clin. Exp. Res., 1:21

    Google Scholar 

  • Hems, R., B.D. Ross, M.N. Berry and H.A. Krebs, 1966, Gluconeogene-sis in the perfused liver, Biochem.. J., 101:284..

    Google Scholar 

  • Israel, Y., L. Videla, and J. Bernstein, 1975, Liver hypermetabolic state after chronic ethanol consumption: hormonal interrelat-ions and pathogenic implications, Fed. Proc., 34: 2052.

    PubMed  CAS  Google Scholar 

  • Oppenheimer, J.H., H.L. Schwartz, and M.I. Surks, 1972, Propylthiouracil (PTU) inhibits the conversion of L-thyroxine (T4) to L-triiodothyronine (T3): An explanation of the anti-T 4 effect of PTU and evidence supporting the concept that T3 is the active thyroid hormone, J. Clin. Invest., 51: 2493.

    Article  PubMed  CAS  Google Scholar 

  • Orrego, H., H. Kalant, Y. Israel, J. Blake, A. Medline, J.G. Rankin, A. Armstrong, and B. Kapur, 1979, Effect of short term therapy with propylthiouracil in patients with alcoholic liver disease, Gastroenterology, 76: 105.

    PubMed  CAS  Google Scholar 

  • Rangaraj, N., and H. Kalant, 1978, Effect of ethanol withdrawal, stress and amphetamine on rat brain (Na+ + K+)ATPase, Biochem. Pharmacol., 27: 1139.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J., and J.M. Cooper, 1970, Method of determining oxygen concentrations in biological media, suitable for calibration of the oxygen electrode, Anal. Biochem., 33: 390.

    Article  PubMed  CAS  Google Scholar 

  • Solymar, M., M.A. Rucklidge, and C. Prys-Roberts, 1971, A mddified approach to the poarographic measurement of blood 02 content, J. Appl. Physiol., 30: 272.

    PubMed  CAS  Google Scholar 

  • Thurman, R.G., W.R. McKenna, and T.B. McCaffrey, 1976, Pathways responsible for the adaptive increase in ethanol utilization following chronic treatment with ethanol: Inhibitor studies

    Google Scholar 

  • with hemoglobin-free perfused rat liver, Molec. Pharmacol.,12:156.

    Google Scholar 

  • Videla, L., J. Bernstein, and Y. Israel, 1973, Metabolic alterations produced in the liver by chronic ethanol administration, Biochem. J., 134: 507.

    PubMed  CAS  Google Scholar 

  • Young, J.B., and L. Landsberg, 1977, Catecholamines and intermediary metabolism, Clin. Endocrinol. Metab., 6: 599.

    Article  PubMed  CAS  Google Scholar 

  • Yuki, T., and R.G. Thurman, 1973, The increase in hepatic oxygen uptake due to prior treatment with ethanol in the rat: a role for glycolysis, Fed. Proc., 37:1351.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schaffer, W.T., Denckla, W.D., Veech, R.L. (1980). The Effect of Chronic Ethanol Consumption on the Rate of Whole Animal and Perfused Liver Oxygen Consumption. In: Thurman, R.G. (eds) Alcohol and Aldehyde Metabolizing Systems-IV. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1419-7_61

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1419-7_61

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1421-0

  • Online ISBN: 978-1-4757-1419-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics