Skip to main content

Breath Acetaldehyde: Evidence of Acetaldehyde Production by Oropharynx Microflora and by Lung Microsomes

  • Chapter
Alcohol and Aldehyde Metabolizing Systems-IV

Abstract

After alcohol ingestion, acetaldehyde is found in expired air and is thought to originate from blood. However, we found that the ratio of acetaldehyde to ethanol was higher in dead space than in alveolar (end-expiratory) air. This observation suggested production of acetaldehyde in the airways. To study this, we washed the mouth of normal subjects with 10 ml of either saline or 5 mM ethanol. Washings with ethanol produced 5.1 ±1.3 nmol/ml of acetaldehyde per minute (vs none with saline). Saline mouth washings incubated with ethanol produced acetaldehyde. This reaction could be prevented by boiling or by microfiltration of the washings suggesting that it was due to microbial enzymes of the oropharynx. We also studied the possibility of pulmonary production of acetaldehyde. Rat lung slices produced 1.32 ±0.19 mnol of acetaldehyde/g lung (wet weight)/minute; microsomal production of acetaldehyde was also detected and this was enhanced by chronic ethanol feeding.

Ethanol in expired air is commonly used as an indicator of blood ethanol concentration. Acetaldehyde--a product of ethanol oxidation--is also found in expired air. Breath acetaldehyde has been assumed to reflect blood acetaldehyde (Freund and O’Hollaren, 1965; Fukui, 1969) and it has also been used to monitor changes in blood concentrations (Zeiner et al., 1979). However, it is possible that there is a local production of acetaldehyde in the airways. Ethanol is continuously excreted in saliva when present in blood. Moreover, some bacteria and all yeasts, which are common inhabitants of the mouth and airways could oxidize ethanol to acetaldehyde by alcohol dehydrogenase or by alcohol oxidase systems (Davis et al., 1973). Moreover, though lung does not contain significant alcohol dehydrogenase activity, generation of acetaldehyde by microsomal ethanol oxidation, particularly after chronic alcohol consumption, has not been assessed. This study was conducted to determine whether breath acetaldehyde is derived exclusively from the blood or whether there are alternative sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Davis, B.D., Dulbecco, R.., Eisen,, H.N., Ginsberg,. H.S., and Wood, W.B., 1973, Microbiol..,. 2nd ed., Harper & Row, Hagerstown.

    Google Scholar 

  • Freund, G., and OHollaren, P.,. 1965, Acetaldehyde concentrations in alveolar air following a standard dose of ethanol in man, J. Lipid Res., 6: 471.

    Google Scholar 

  • Fukui, Y., 1969, Gas chromatographic determination of acetaldehyde. in the expired air after ingestion of alcohol, Jap.. J. Leg., Med., 23: 24.

    Google Scholar 

  • Lieber, C.S., and DeCarli, L.M., 1970, Quantitative relationship between the amount of dietary fat and the severity of the alcoholic fatty liver, Amer. J. Clin. Nutr., 23:474..

    Google Scholar 

  • Seitz, H.K.., Korsten, M.A. and Lieber, C.S., 1979, Ethanol oxidation by intestinal microsomes: Increased activity after chronic ethanol administration, Life Sci., in press.

    Google Scholar 

  • Zeiner, A.R., Paredes, A.,. and Christensen,. H.D., 1979, The role of acetaldehyde in mediating reactivity to an acute dose of ethanol among different racial groups, Alcoholism: Clin. Exp. Res., 3: 11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pikkarainen, P., Baraona, E., Seitz, H., Lieber, C.S. (1980). Breath Acetaldehyde: Evidence of Acetaldehyde Production by Oropharynx Microflora and by Lung Microsomes. In: Thurman, R.G. (eds) Alcohol and Aldehyde Metabolizing Systems-IV. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1419-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1419-7_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1421-0

  • Online ISBN: 978-1-4757-1419-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics