Kinetic Isotope Effects in Cytochrome P-450-Catalyzed Oxidation Reactions. II. Interactions of Cytochrome P-450 with Substrates and Nadph-Cytochrome \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{c} \) Reductase

  • Anthony Y. H. Lu
  • Gerald T. Miwa
  • Susan B. West
  • Barbara J. Hodshon
  • William A. Garland
Chapter

Abstract

The liver microsomal cytochrome P-450-containing mixed function oxidase system is responsible for the metabolism of endogenous as well as exogenous compounds such as drugs, Mutagens and carcinogens. Purification and reconstitution studies have established that the basic components of this enzyme system are cytochrome P-450, NADPH-cytochrome c reductase (NADPH-cytochrome P-450 reductase) and phospholipid (Du et al., 1969). Recently, a family of cytochrome p-450 isozymes have been isolated and characterized (Coon et al., 1977; Lu and West, 1978; Johnson, 1979; Guengerich, 1979). These cytochrome P-450 isozymes differ in their minimum molecular weights, spectral, catalytic, immunological and structural properties. NADPH-cytochrome c reductase, a flavoprotein, has also been purified and characterized (Vermilion and Coon, 1978; Gum and Strobel, 1979; Yasukochi et al., 1979).

Keywords

Isotope Effect Microsomal Membrane Kinetic Isotope Effect Reconstituted System Deuterium Isotope Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitio, A., 1978, A Simple and sensitive assay of 7-ethoxycoumarin deethylation, Anal. Biochem. 85:488.Google Scholar
  2. Bjorkhem, I., 1977, Rate-limiting step in microsomal cytochrome P-450 catalyzed hydroxylations, Pharmac. Ther. A., 1:327.Google Scholar
  3. Coon, M. J., Haugen, D. A., Guengerich, F. P., Vermilion, J. L. and Dean, W. L., 1976, Liver microsomal membranes: reconstitution of the hydroxylation system containing cytochrome P-450, in: “The Structure Basis of Membrane Function,” Y. Hatefi and L. Djavadi-Ohaniance, eds., Academic Press, New York.Google Scholar
  4. Coon, M. J., Vermilion, J. L., Vatsis, K. P., French, J. S., Dean, W. L. and Haugen, D. A., 1977, Biochemical studies on drug metabolism: isolation of multiple forms of liver microsomal cytochrome P-450, in: “Drug Metabolism Concepts” D. M. Jerina, ed., American Chemical Society.Google Scholar
  5. Duppel, W. and Ullrich, V., 1976, Membrane effects on drug monooxygenation activity in hepatic microsomes, Biochim. Biophys. Acta. 426:399.Google Scholar
  6. Guengerich, F. P., 1979, Isolation and purification of cytochrome P-450 and the existence of multiple forms, Pharmac. Ther., 6: 99.Google Scholar
  7. Gum, J. R. and Strobel, H. W., 1979, Purified NADPH-cytochrome P-450 reductase: interaction with hepatic microsomes and phospholipid vesicles, J. Biol. Chem., 254:4177.Google Scholar
  8. Imai, Y., Sato, R. and Iyanagi, T., 1977, Rate-limiting step in the reconstituted microsomal drug hydroxylase system, J. Biochem. 82:1237.Google Scholar
  9. Johnson, E. F., 1979, Multiple forms of cytochrome P-450: criteria and significance, in: “Reviews in Biochemical Toxicology,” E. Hodgson, J. Bend and R. M. Philpot, eds., Elsevier, New York.Google Scholar
  10. Lu, A. Y. H., Junk, K. W. and Coon, M. J., 1969, Resolution of the cytochrome P-450 containing w-hydroxylation system of liver microsomes into three components, J. Biol. Chem. 244:3714.Google Scholar
  11. Lu, A. Y. H. and West, S. B., 1978, Reconstituted mammalian mixed-function oxidases: requirements, specificities and other properties, Pharmac. Ther. A., 2:337.Google Scholar
  12. Lu, A. Y. H., Miwa, G. T. and West, S. B., 1980, On the stimulatory role of phosphatidylcholine in a cytochrome P-450-containing reconstituted hydroxylation system, in: “Microsomes, Drug Metabolism and Chemical Carcinogenesis,” M. J. Coon, A. H. Conney, R. W. Estabrook, J. R. Gillette and P. J. O’Brien, eds., Academic Press, New York, in press.Google Scholar
  13. Miwa, G. T., West, S. B. and Lu, A. Y. H., 1978, Studies on the rate-limiting enzyme component in the microsomal monooxygenase system: incorporation of purified NADPH-cytochrome c reductase and cytochrome P-450 into rat liver microsomes, J. Biol. Chem. 253:1921.Google Scholar
  14. Miwa, G. T., West, S. B., Huang, M. T. and Lu, A. Y. H., 1979, Studies on the association of cytochrome P-450 and NADPH-cytochrome c reductase during catalysis in a reconstituted hydroxylating system, J. Biol. Chem. 254:5695.Google Scholar
  15. Northrop, D. B., 1977, Determining the absolute magnitude of hydrogen isotope effects, in: “Isotope effects on enzyme-catalyzed reactions,” W. W. Cleland, M. H. O’Leary and D. B. Northrop, eds., University Park Press, Baltimore.Google Scholar
  16. Peterson, J. A., Ebel, R. E., O’Keeffe, D. H., Matsubara, T. and Estabrook, R. W., 1976, Temperature dependence of cytochrome P-450 reduction: a model for NADPH-cytochrome P-450 reductase: cytochrome P-450 interaction, J. Biol. Chem. 251:4010.Google Scholar
  17. Stier, A. and Sackmann, E., 1973, Spin label as enzyme substrates: heterogeneous lipid distribution in liver microsomal membranes, Biochim. Biophys. Acta. 311:400.Google Scholar
  18. Taniguchi, H., Imai, Y., Iyanagi, T. and Sato, R., 1979, Interaction between NADPH-cytochrome P-450 reductase and cytochrome P-450 in the membrane of phosphatidylcholine vesicles, Biochim. Biophys. Acta 550:341.Google Scholar
  19. Thomas, P. E., Lu, A. Y. H., Ryan, D., West, S. B., Kawalek, J. and Levin, W., 1976, Multiple forms of rat liver cytochrome P-450: immunochemical evidence with antibody against cytochrome P-448, J. Biol. Chem. 251:1385.Google Scholar
  20. Vermilion, J. L. and Coon, M. J., 1978, Purified liver microsomal NADPH-cytochrome P-450 reductase: spectral characterization of oxidation-reduction states, J. Biol. Chem. 253:2694.Google Scholar
  21. West, S. B., Huang, M. T., Miwa, G. T. nd Lu, A. Y. H., 1979, A simple and rapid procedure for the purification of phenobarbital-inducible cytochrome P-450 from rat liver microsomes, Arch. Biochem. Biophys. 193: 42Google Scholar
  22. Yang, C. S., 1977, The organization and interaction of monooxygenase enzymes in the microsomal membrane, Life Sci. 21: 1047.Google Scholar
  23. Yang, C. S., Strickhart, F. S. and Kicha, L. P., 1978, Interaction between NADPH-cytochrome P-450 reductase and hepatic microsomes, Biochim. Biophys. Acta. 509.:326.Google Scholar
  24. Yasukochi, Y. and Masters, B. S. S., 1976, Some properties of a detergent-solubilized NADPH-cytochrome c reductase purified by bio-specific affinity chromatography, J. Biol. Chem., 251:5337.Google Scholar
  25. Yasukochi, Y., Peterson, J. A. and Masters, B. S. S., 1979, NADPHcytochrome P-450 reductase: spectrophotometric and stopped flow kinetic studies con the formation of reduced flavoprotein intermediates, J. Biol. Chem., 254:7097.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Anthony Y. H. Lu
    • 1
    • 2
  • Gerald T. Miwa
    • 1
    • 2
  • Susan B. West
    • 1
    • 2
  • Barbara J. Hodshon
    • 1
    • 2
  • William A. Garland
    • 1
    • 2
  1. 1.Department of Animal Drug Metabolism and RadiochemistryMerck Sharp & Dohme Research LaboratoriesRahwayUSA
  2. 2.Department of Biochemistry and Drug MetabolismHoffmann-La Roche Inc.NutleyUSA

Personalised recommendations