Neutron and X-Ray Scattering from Aggregates

  • J. K. Kjems
  • T. Freltoft

Abstract

Scattering experiments are indispensable for the study structures and correlation functions in condensed matter science. Typically, the resulting information can be related to characteristic lengths for the system under study such as the correlation lengths near critical points, the radius of gyration of macromolecules, the mean square displacements for thermal vibrations etc. Also for scale invariant systems without a single characteristic length, such like the fluctuations at the critical point in a continuous phase transition, can scattering experiments be used to determine the characteristic power-law decay of the correlations. Scattering experiments are therefore also well-suited probes for the structures of randomly formed aggregates which appear self-similar over considerable ranges in length and thus can be considered as scale invariant, volume fractals1–3.

Keywords

Aggregate Size Fractal Dimensionality Continuous Phase Transition Silica Colloid Diffusion Limited Aggregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.A. Witten and L.M. Sander, Phys. Rev. Letters 47: 1400–1403 (1981).CrossRefGoogle Scholar
  2. 2.
    P. Meakin, Phys. Rev. A. 27: 1495–1507 (1983).Google Scholar
  3. 3.
    B.B. Mandelbrot, “The Fractal Geometry of Nature” ( North Holland, San Fransisco (1983).Google Scholar
  4. 4.
    S.K. Sinha, T. Freltoft and J.K. Kjems, in “Kinetics of Aggregation and Gelation”, F. Family and D.P. Landau, editors ( North Holland, New York (1984).Google Scholar
  5. 5.
    D.W. Schaefer, J.E. Martin, P. Wiltzius and D.S. Cannell, Phys. Rev. Letters, 53: 2371–2374 (1984).CrossRefGoogle Scholar
  6. 6.
    D.A. Weitz and M. Oliveria, Phys. Rev. Letters, 52: 1433–1436 (1984).CrossRefGoogle Scholar
  7. 7.
    T. Freltoft, J.K. Kjems and S.K. Sinha, to be published.Google Scholar
  8. 8.
    J. Feder, T. Jgssang and E. Rosenquist, Phys. Rev. Letters, 53: 1403–1406 (1984).CrossRefGoogle Scholar
  9. 9.
    D. Weitz, J.S. Huang, M.Y. Lin and J. Sung, Phys. Rev. Letters 53: 16571660 (1984).Google Scholar
  10. 10.
    S. Havlin and R. Nossal, J. Phys. A: Math. Gen., 17: L427 - L432 (1984).MathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Jullien, M. Kolb, R. Botet, Journ. de Physique Lettr. 45: 211 (1984).CrossRefGoogle Scholar
  12. 12.
    J.E. Martin, D.W. Schaefer, Phys. Rev. Lett. 53: 2457–2460 (1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. K. Kjems
    • 1
  • T. Freltoft
    • 1
  1. 1.Ris ø National LaboratoryRoskildeDenmark

Personalised recommendations