The Dimensions of Strange Attractors: A Survey of Experimental Studies

  • Tormod Riste
  • Kaare Otnes


Attractors are objects in multidimensional phase space. Their topology may even so be reconstructed from time-series observations of a single variable. With available techniques, one may also from such observations deduce a dimension for characterization of the attractor. In this paper we review experimental methods and results of such studies for systems that are nonlinearly driven into the chaotic regime. The strange attractors that develop are mostly identified as fractal objects of a single-valued dimension in the range 2–5. We discuss possible reasons for deviations from this behaviour. The relevance of attractors and chaos to disordered spatial structures is discussed.


Fractal Dimension Lyapunov Exponent Phase Portrait Chaotic Attractor Strange Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Ruelle, The Mathematical Intelligencer 2 (1980) 126MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    J.D. Farmer, E. Ott and J. Yorke, Physica 701 (1983) 153MathSciNetGoogle Scholar
  3. 3.
    J.D. Farmer in “Evolution of Ordered and Chaotic Patterns in Systems treated by the Natural. Sciences and Mathematics”, ed. H. Haken, ( Springer, Berlin 1983 ) p. 228Google Scholar
  4. 4.
    J.C. Antoranz and M.G. Velarde in “Nonequilibrium Cooperative Phenomena in Physics and related Fields”, ed. M.G. Velarde, ( Plenum 1984 ) p. 103.Google Scholar
  5. 5.
    Most information in this review, also as regards theory, is contained in papers by other authors in Proceedings of the 59th Nobel symposium, June 1984, published as Physica Scripta 19 (1985), ed. S. Lundqvist.Google Scholar
  6. 6.
    J.-C. Roux, R.H. Simoyi and H.L. Swinney, Physica an (1983) 257Google Scholar
  7. 7.
    P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50 (1983) 346MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Ben-Mizrakhi, I. Procaccia and P. Grassberger, Phys. Rev. 29A (1984) 975CrossRefGoogle Scholar
  9. 9.
    T. Riste and K. Otnes in “Condensed Matter Resaerch Using Neutrons”, eds. S.W. Lovesey and R. Scherm, ( Plenum 1984 ) p. 227CrossRefGoogle Scholar
  10. 10.
    A. Brandstäter, J. Swift, H.L. Swinney and A. Wolf, and J.D. Farmer and E. Jen, and P.J. Crutchfield, Phys. Rev. Lett. 51 (1983) 1442CrossRefGoogle Scholar
  11. 11.
    B. Malraison, P. Atten, P. Bergé and M. Dubois, J. Physique, Lettres 44 (1983) L. 897CrossRefGoogle Scholar
  12. 12.
    M. Giglio, S. Musazzi and U. Perini, Phys. Rev. Lett. 53 (1984) 2402CrossRefGoogle Scholar
  13. 13.
    T. Riste and K. Otnes in Ref. 5, p. 76Google Scholar
  14. 14.
    D. Ruelle in Ref. 5, p. 210Google Scholar
  15. 15.
    J. Guckenheimer and G. Buzyna, Phys. Rev. 51 (1983) 1438MathSciNetGoogle Scholar
  16. 16.
    C.D. Jeffries in Ref. 5, p. 11Google Scholar
  17. 17.
    R. Van Buskirk and C.D. Jeffries, Phys. Rev. A (to be published)Google Scholar
  18. 18.
    G.A. Hald, C.D. Jeffries and E.E. Haller in Proceedings of the 17th Internat. Conf. on Physics of Semiconductors, San Fransisco 1984 ( Springer Verlag, to be published )Google Scholar
  19. 19.
    S. Martin, H. Leber and W. Martienssen, Phys. Rev. Lett. 51 (1984) p. 303CrossRefGoogle Scholar
  20. 20.
    C. Grebogi, E. Ott and J. Yorke, Physica /p (1983) 181Google Scholar
  21. 21.
    Y. Gu, M. Tung, J.M. Yuan, D.H. Feng and L. Narducci, Phys. Rev. Lett. 52 (1984) 701MathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Froyland, Physica an (1983) 423Google Scholar
  23. 23.
    A. Wolf, J.B. Swift, H.L. Swinney and J.A. Vastano, Physica D (to be published)Google Scholar
  24. 24.
    P. Bak, Phys. Rev. Lett. 45. (1981) 791CrossRefGoogle Scholar
  25. 25.
    M. HOgh Jensen in Ref. 5, p. 64Google Scholar
  26. 26.
    J.P. Gollub in Ref. 5, p. 79Google Scholar
  27. 27.
    B. Lebech, K. Clausen and O. Vogt, quoted in Ref. 5, p. 68Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Tormod Riste
    • 1
  • Kaare Otnes
    • 1
  1. 1.Institute for Energy TechnologyKjellerNorway

Personalised recommendations