Skip to main content
  • 361 Accesses

Abstract

In what follows, we would like to discuss the configuration of randomly branched polymers in different environments. This configuration is accessible experimentally through light or neutron scattering experiments for instance, and some experimental results will be given. Before we come to this discussion, some words have to be said about the synthesis of these polymers, and about the influence of the experimental method itself on the conformation of the polymers. Although the detailed chemistry of the synthesis may be very involved, it is most probable that only a limited number of different classes only may be actually met. These may be characterized by the distribution of molecular weights. Hence, we will be concerned only with one such classes, which corresponds to the random percolation model1. This will be done in section II, and will provide the,distribution function. Our approach to the conformation of the polymers then will make use of a Flory — de Gennes theory2,3. Although it is not exact, this usually provides a fairly good approximation of the fractal dimensions. Thus we will consider the percolation problem from an energy point of view rather than from the usual geometric approach between any two monomers there is an interaction potential V(r), that may or may not be screened depending on the conditions. The case of a single polymer — or animal — will be considered in section III, whereas section IV deals with a polymer in the presence of many others in the reaction bath. With these results in hand, we may discuss the experimental results. In section V, we consider a sol, made of large but finite polymers below the threshold. Here the solution is heavily diluted before light scattering experiments are performed. We will argue that the screening of the interactions, which is important in the reaction bath, disappears upon dilution leading to a swelling of every individual polymer of the sol.

Laboratoire commun CEA — CNRS

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Stauffer, Phys. Rep. 54, 1, (1979). See also this volume.

    Google Scholar 

  2. P.J. Flory, Principles of Polymer Chemistry, Cornell U. Press (1953).

    Google Scholar 

  3. P.G. de Gennes, Scaling Concepts in Polymer Physics, Cornell U. Press (1979).

    Google Scholar 

  4. S.J. Candau et al, Proc. 27th Microsymposium on Macromolecules, Prague (1984).

    Google Scholar 

  5. F. Schosseler, L. Leibler, J. Physique Lett. 45, 501 (1984)

    Article  Google Scholar 

  6. B.H. Zimm, W.H. Stockmayer, J. Chem. Phys. 17, 1301 (1949).

    Article  Google Scholar 

  7. G. Parisi, N. Sourlas, Phys. Rev. Lett. 46, 871 (1981).

    Article  MathSciNet  Google Scholar 

  8. M. Daoud, F. Family, G. Jannink, J. Physique Lett. 45, 199 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daoud, M. (1991). Swelling of Branched Polymers. In: Pynn, R., Skjeltorp, A. (eds) Scaling Phenomena in Disordered Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1402-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1402-9_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1404-3

  • Online ISBN: 978-1-4757-1402-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics