Spin Dynamics on Percolating Networks

  • G. Aeppli
  • H. Guggenheim
  • Y. J. Uemura


We have used inelastic neutron scattering to measure the order parameter relaxation rate Γ in the dilute, two-dimensional Ising antiferromagnet Rb2CoMg1−cF4 with c very close to the magnetic percolation threshold. Where k is the inverse magnetic correlation length, Γ ~ k z with z=2.4 −0.1 +0.2 . Our results are discussed in terms of current ideas about spin relaxation on fractals.


Spin Relaxation Incident Neutron Energy Stagger Magnetization Kinetic Ising Model Normalize Relaxation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for example, S.-K. Ma, Modern Theory of Critical Phenomena, (Benjamin; Reading, MA, 1976).Google Scholar
  2. 2.
    A review of experiments on the percolation and random field problems is given by R. J. Birgeneau, R. A. Cowley, G. Shirane and H. Yoshizawa, J. Stat. Phys. 34, 817 (1984)CrossRefGoogle Scholar
  3. The theory of percolation is reviewed by D. Stauffer, Phys. Rep. 54, 1 (1979).CrossRefGoogle Scholar
  4. 3.
    An early overview is Ill—condensed Matter, ed. R. Balian, R. Maynard, and-G. Toulouse (North Holland-World Scientific; Amsterdam-Singapore, 1983).Google Scholar
  5. 4.
    H. Sompolinsky and A. Zippelius, Phys. Rev. B25, 6860 (1982).CrossRefGoogle Scholar
  6. 5.
    R. Rammal and G. Toulouse, J. Phys. (Paris) I.étt. 44, L13 (1983)CrossRefGoogle Scholar
  7. Y. Geffen, A. Aharony and J. Alexander, Phys, Rev. Lett. 50, 77 (1983).CrossRefGoogle Scholar
  8. 6.
    G. Aeppli, H. Guggenheim, and Y. J. Uemurâ, Phys. Rev. Lett. 52, 942 (1984).CrossRefGoogle Scholar
  9. 7.
    R. A. Cowley, R. J. Birgeneau, G. Shirane, H. G. Guggenheim H. Ikeda, Phys. Rev. B21, 4038 (1980).CrossRefGoogle Scholar
  10. 8.
    M. T. Hutchings, H. Ikeda, and E. Janke, Phys. Rev. Lett. 49, 386 (1982).CrossRefGoogle Scholar
  11. 9.
    P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).CrossRefGoogle Scholar
  12. 10.
    D. Kumar, Phys. Rev. B30, 2961 (1984)CrossRefGoogle Scholar
  13. J. M. Luscomie and R. C. Desai, preprint.Google Scholar
  14. 11.
    C. Henley, preprint (1985).Google Scholar
  15. 12.
    C. K. Harris and R. B. Stinchcombe, to be published, and R. B. Stinchcombe, this volume.Google Scholar
  16. 13.
    A. Heidemann, J. D. Axe, L. Passell, D. Moncton, H. Guggenheim and G. Aeppli, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • G. Aeppli
    • 1
  • H. Guggenheim
    • 1
  • Y. J. Uemura
    • 2
  1. 1.AT&T Bell LaboratoriesMurray HillUSA
  2. 2.Brookhaven National LaboratoryUptonUSA

Personalised recommendations