Skip to main content

Abstract

Scaling concepts in disordered matter should be of use to the physics of porous media (POM)1. The applications of such media are numerous, ranging from hydrogeology, oil industry, chromatography and filtration, and justify the lasting interest for this physics2. We will focus our attention towards the effect of disorder in POM and, more precisely, that of multiple scales in the geometry of the fluid(s) penetrating them; but we will also recall some basic properties of POM. Geometrical disorder in POM has several origins:

  • There is a strong contrast between the material properties of the solid phase and the fluid one(s) penetrating it.

  • The pore space can range from homogeneous to very heterogeneous (e.g. from sintered materials obtained with a relatively uniform particle size distribution to fractured rocks presenting an irregular distribution of cracks of variable size, aperture...). Heterogeneous POM often present a large range of geometrical scales.

  • In multiple phase flows, the distribution of the fluid phases contained in the POM introduces additional heterogeneities and multiplicity of scales.

  • Local heterogeneities like those due to roughness or of chemical nature (e.g. presence of clays in sandstones) control the wetting properties in polyphasic flows. We will not consider this last class of parameters which, nevertheless, are of dramatic practical importance. Chemical surface effects can also model the properties of walls in random field problems: the advancing front of a wetting fluid on an heterogeneous surface (or, possibly, in a porous material made of wettable and non wettable properties) displays some characteristic features (rough interfaces, hysteresis) of R.F. systems4 discussed in the article by Villain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. A. L. Dullien, Porous Media, Fluid Transport and Pore Structure, Acad. Press, New-York (1979).

    Google Scholar 

  2. The present review extends and complements the article by E. Guyon, P. P. Hulin, R. Lenormand (in french) in Ann. des Mines, special issue “Ecoulements dans les Milieux Fissurés”, 191, (5.6) p. 17 (1984) where a larger number of references can be found.

    Google Scholar 

  3. Physics and Chemistry of Porous Media, D.L. Johnson and P.M. Sen edit. A.I.P. Conference Proceed. n° 107, AIP, New-York (1984).

    Google Scholar 

  4. For example, see J.F. Joanny, Thèse Paris, p. 135 (1985).

    Google Scholar 

  5. H. Darcy, Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris (1856).

    Google Scholar 

  6. L. Sander, in these proceedings. The Hele Shaw geometry involving a flow between two parallel plates distant of b can be described by eq. (1) with a constant K - b3/12.

    Google Scholar 

  7. L. A. Santaló, Integral Geometry and Geometric Probability, Encyclopedia of Mathematics, vol. I, Addison Wesley Publishing Cie, Reading Massachusetts.

    Google Scholar 

  8. P. Z. Wong, J. Koplik and J. P. Tomanic, to appear in Phys. Rev. B.

    Google Scholar 

  9. D. L. Johnson, Appl. Phys. Lett. 37: 1065 (1980).

    Article  Google Scholar 

  10. R. Lemaitre, thèse Université Rennes (F385).

    Google Scholar 

  11. R. Omnes, J. de Phys. 46: 139 (1985).

    Article  MathSciNet  Google Scholar 

  12. A.J. Katz et A. H. Thompson, Phys. Rev. Lett. 54, 1325 (1985).

    Article  Google Scholar 

  13. R. Orbach, these lectures.

    Google Scholar 

  14. P. G. deGennes, Partial Filling of Fractal Structure by Wetting Fluid, to be published.

    Google Scholar 

  15. T. Madden, Geophysics, 31: 1104 (1976).

    Article  Google Scholar 

  16. C.J. Allègre„ J. L. Le Mouel, A. Provost, Nature 297, 5861, 47–49 (1982).

    Article  Google Scholar 

  17. S. R. Broadbent and J.M. Hammersley, Proc. Camb. Phil. Soc. 53: 629 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  18. I. Bernabe, W. C. Brace, Mech. of Materials 1: 173 (1982).

    Article  Google Scholar 

  19. P. Z. Wong, J. Koplik and J. P. Tomanic, to appear in Phys. Rev. B.

    Google Scholar 

  20. G. de Marsily, Hydrogeologie Quantitative, Masson, Paris (1981).

    Google Scholar 

  21. E. Charlaix, E. Guyon, N. Rivier, Sol. State Com. 50, 11:999 (1984). The article also shows that it is possible to derive these parameters form random plane cuts.

    Google Scholar 

  22. G. E. Pike and C. H. Seayer, Phys. Rev. B 10: 1421 (1974).

    Article  Google Scholar 

  23. The same dimensionless quantity describes within a numerical factor the onset of nematic ordering of percolation of arrays of rods (or disks) and that of ordering of calamitic (or discotic) nematics. Indeed both phases can coexist in molecular systems. See L. Onsager, Ann. N.Y. Acad. Sci. 51: 627 (1949).

    Google Scholar 

  24. P. C. Robinson, J. Phys. A, 16: 605 (1983).

    Article  MathSciNet  Google Scholar 

  25. I. Balberg, C. H. Anderson, S. Alexander and N. Wagner, Phys. Rev. B 30: 3933 (1984).

    Article  Google Scholar 

  26. S. Wilke, E. Guyon and G. de Marsily, Math. Geol. 17: 17 (1985).

    Article  Google Scholar 

  27. B. Halperin, S. Fang, P.N. Sen, to be published.

    Google Scholar 

  28. A. Rouleau, PH.D Thesis, Waterloo, Ontario (1984).

    Google Scholar 

  29. J. C. S. Long, PH.D Thesis, University of California (1983).

    Google Scholar 

  30. B. I. Shklovskii, A. L. Efros, Electronic Properties of Doped Semi-Conductor, Springer Verlag, Berlin (1984).

    Book  Google Scholar 

  31. J. Bear, Dynamics of Flow in Porous Media, Chapter 9, American Elsevier, New-York (1972).

    Google Scholar 

  32. Groupe Poreux P.C., Two components Properties in Heterogeneous Porous Media, Proc. “Physics offinely divided matter”, Les Houches, Ed. by Daoud (Springer ) (1985).

    Google Scholar 

  33. Ch. G. Jacquin, and P. M. Adler, to be published in S. Coll. Int. Sci. (1985).

    Google Scholar 

  34. P. G. de Gennes and E. Guyon, J. Meca. 17: 403 (1978).

    Google Scholar 

  35. I. Chatzis and F. A. L. Dullien, Journal of Canadian Petroleum Technology, January-March (1977).

    Google Scholar 

  36. R. G. Larson, L. E. Scriven and H. T. Davis, Chem. Eng. Sci. 36:57, Pergamon Press Ldt, Great Britain (1980).

    Google Scholar 

  37. R. Lenormand and S. Bories, C.R. Acad. Sc. Paris, 291 B: 279 (1980).

    Google Scholar 

  38. R. Lenormand and C. Zarcone, to be submitted to Phys. Rev. Lett. (1985).

    Google Scholar 

  39. D. Wilkinson, Phys. Rev. A 30: 520 (1984).

    Article  Google Scholar 

  40. R. Lenormand and C. Zarcone, J. Phys. Chem. Hydr., January (1985).

    Google Scholar 

  41. L. Paterson, Phys. Rev. Lett. 52–18: 1621 (1984).

    Google Scholar 

  42. P. G. Saffman and G. I. Taylor, Proc. R. Soc. Lond. A 245–311 (1985).

    Google Scholar 

  43. S. B. Gorell and G. M. Homsy, S.I.AM, J. Appl. Math. 43–1:79 (1983). A general condition for marginal stability of the S.T. instability including permeability as well as density difference effect is where the subscripts 1,2 refer to the displacing and displaced fluid.

    Google Scholar 

  44. J. Bear, Dynamics of Fluids in Porous Media, chap. 10, American Elsevier, N.Y. We have benefited from several discussions with J. Koplik on chapter 4 1

    Google Scholar 

  45. G. I. Taylor in Low Reynolds Number Flows in Illustrated Experiments in Fluid Mechanics, MIT Press (1982) and film of the N.C.F.M. Films.

    Google Scholar 

  46. We thank J. Feder, U. Oxaal and their group for communication of their unpublished data.

    Google Scholar 

  47. P. G. Saffman, J. Fl. Mech. 6: 321 (1959).

    Article  MathSciNet  Google Scholar 

  48. R. Aris, Proc. Roy. Soc. A. 235: 67 (1956).

    Article  Google Scholar 

  49. The effect of velocity field is quite different from that of an externally applied field considered by Dhar and Barma for a biased ant walk. In this case the local probabilities are determined by the orientation of bonds with respect to the field (like in trickled bed flows in a gravitational field“). In the present problem, there is a continuum of particles which respond the local field (the local velocity field) which can be obtained only from a knowledge of the connectivity properties.

    Google Scholar 

  50. M. Crine, P. Marchot and G. L’Homme, Chem. Eng. Comm. 7: 377 (1980).

    Article  Google Scholar 

  51. C. D. Catalin and J. Roussenq, work in progress.

    Google Scholar 

  52. J. M. Hammersley and D.J.A. Welsh, Cont. Phys. 21: 593 (1980).

    Article  Google Scholar 

  53. A recent discussion of the so called “Richardson Pair Diffusion” can be found in S. Grossmann and I. Prococcia, Phys. Rev. A 29:1358 (1984).

    Google Scholar 

  54. This correlation function can be measured by forced Rayleigh Scattering M. Cloitre and E. Gyron, to appear in Jour. F1. Mech.

    Google Scholar 

  55. G. Matheron, unpublished.

    Google Scholar 

  56. P. G. de Gennes, J. F1. Mech. 136: 189 (1983).

    Article  MATH  Google Scholar 

  57. M. Sahimi, H. T. Davis and L. E. Scriven, Chem. Eng. Com. 23: 329 (1983).

    Article  Google Scholar 

  58. J. P. Gaudet, Thèse Grenoble (1978).

    Google Scholar 

  59. L. de Arcangelis, S. Redner and A. Coniglio, preprint.

    Google Scholar 

  60. A. Dieulin, G. Matheron, G. de Marsily, The Science of Total Environment, 21: 319 (1981).

    Article  Google Scholar 

  61. D. L. Koch, J. P. Brady, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baudet, C., Charlaix, E., Clément, E., Gyron, E., Hulin, FP., Leroy, C. (1991). Scaling Concepts in Porous Media. In: Pynn, R., Skjeltorp, A. (eds) Scaling Phenomena in Disordered Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1402-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1402-9_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1404-3

  • Online ISBN: 978-1-4757-1402-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics