Abstract
-
There is a strong contrast between the material properties of the solid phase and the fluid one(s) penetrating it.
-
The pore space can range from homogeneous to very heterogeneous (e.g. from sintered materials obtained with a relatively uniform particle size distribution to fractured rocks presenting an irregular distribution of cracks of variable size, aperture...). Heterogeneous POM often present a large range of geometrical scales.
-
In multiple phase flows, the distribution of the fluid phases contained in the POM introduces additional heterogeneities and multiplicity of scales.
-
Local heterogeneities like those due to roughness or of chemical nature (e.g. presence of clays in sandstones) control the wetting properties in polyphasic flows. We will not consider this last class of parameters which, nevertheless, are of dramatic practical importance. Chemical surface effects can also model the properties of walls in random field problems: the advancing front of a wetting fluid on an heterogeneous surface (or, possibly, in a porous material made of wettable and non wettable properties) displays some characteristic features (rough interfaces, hysteresis) of R.F. systems4 discussed in the article by Villain.
Keywords
Porous Medium Representative Elementary Volume Percolation Threshold Fracture Rock Capillary NumberPreview
Unable to display preview. Download preview PDF.
References
- 1.F. A. L. Dullien, Porous Media, Fluid Transport and Pore Structure, Acad. Press, New-York (1979).Google Scholar
- 2.The present review extends and complements the article by E. Guyon, P. P. Hulin, R. Lenormand (in french) in Ann. des Mines, special issue “Ecoulements dans les Milieux Fissurés”, 191, (5.6) p. 17 (1984) where a larger number of references can be found.Google Scholar
- 3.Physics and Chemistry of Porous Media, D.L. Johnson and P.M. Sen edit. A.I.P. Conference Proceed. n° 107, AIP, New-York (1984).Google Scholar
- 4.For example, see J.F. Joanny, Thèse Paris, p. 135 (1985).Google Scholar
- 5.H. Darcy, Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris (1856).Google Scholar
- 6.L. Sander, in these proceedings. The Hele Shaw geometry involving a flow between two parallel plates distant of b can be described by eq. (1) with a constant K - b3/12.Google Scholar
- 7.L. A. Santaló, Integral Geometry and Geometric Probability, Encyclopedia of Mathematics, vol. I, Addison Wesley Publishing Cie, Reading Massachusetts.Google Scholar
- 8.P. Z. Wong, J. Koplik and J. P. Tomanic, to appear in Phys. Rev. B.Google Scholar
- 9.D. L. Johnson, Appl. Phys. Lett. 37: 1065 (1980).CrossRefGoogle Scholar
- 10.R. Lemaitre, thèse Université Rennes (F385).Google Scholar
- 11.R. Omnes, J. de Phys. 46: 139 (1985).MathSciNetCrossRefGoogle Scholar
- 12.A.J. Katz et A. H. Thompson, Phys. Rev. Lett. 54, 1325 (1985).CrossRefGoogle Scholar
- 13.R. Orbach, these lectures.Google Scholar
- 14.P. G. deGennes, Partial Filling of Fractal Structure by Wetting Fluid, to be published.Google Scholar
- 15.T. Madden, Geophysics, 31: 1104 (1976).CrossRefGoogle Scholar
- 16.C.J. Allègre„ J. L. Le Mouel, A. Provost, Nature 297, 5861, 47–49 (1982).CrossRefGoogle Scholar
- 17.S. R. Broadbent and J.M. Hammersley, Proc. Camb. Phil. Soc. 53: 629 (1957).MathSciNetMATHCrossRefGoogle Scholar
- 18.I. Bernabe, W. C. Brace, Mech. of Materials 1: 173 (1982).CrossRefGoogle Scholar
- 19.P. Z. Wong, J. Koplik and J. P. Tomanic, to appear in Phys. Rev. B.Google Scholar
- 20.G. de Marsily, Hydrogeologie Quantitative, Masson, Paris (1981).Google Scholar
- 21.E. Charlaix, E. Guyon, N. Rivier, Sol. State Com. 50, 11:999 (1984). The article also shows that it is possible to derive these parameters form random plane cuts.Google Scholar
- 22.G. E. Pike and C. H. Seayer, Phys. Rev. B 10: 1421 (1974).CrossRefGoogle Scholar
- 23.The same dimensionless quantity describes within a numerical factor the onset of nematic ordering of percolation of arrays of rods (or disks) and that of ordering of calamitic (or discotic) nematics. Indeed both phases can coexist in molecular systems. See L. Onsager, Ann. N.Y. Acad. Sci. 51: 627 (1949).Google Scholar
- 24.P. C. Robinson, J. Phys. A, 16: 605 (1983).MathSciNetCrossRefGoogle Scholar
- 25.I. Balberg, C. H. Anderson, S. Alexander and N. Wagner, Phys. Rev. B 30: 3933 (1984).CrossRefGoogle Scholar
- 26.S. Wilke, E. Guyon and G. de Marsily, Math. Geol. 17: 17 (1985).CrossRefGoogle Scholar
- 27.B. Halperin, S. Fang, P.N. Sen, to be published.Google Scholar
- 28.A. Rouleau, PH.D Thesis, Waterloo, Ontario (1984).Google Scholar
- J. C. S. Long, PH.D Thesis, University of California (1983).Google Scholar
- 29.B. I. Shklovskii, A. L. Efros, Electronic Properties of Doped Semi-Conductor, Springer Verlag, Berlin (1984).CrossRefGoogle Scholar
- 30.J. Bear, Dynamics of Flow in Porous Media, Chapter 9, American Elsevier, New-York (1972).Google Scholar
- 31.Groupe Poreux P.C., Two components Properties in Heterogeneous Porous Media, Proc. “Physics offinely divided matter”, Les Houches, Ed. by Daoud (Springer ) (1985).Google Scholar
- 32.Ch. G. Jacquin, and P. M. Adler, to be published in S. Coll. Int. Sci. (1985).Google Scholar
- 33.P. G. de Gennes and E. Guyon, J. Meca. 17: 403 (1978).Google Scholar
- I. Chatzis and F. A. L. Dullien, Journal of Canadian Petroleum Technology, January-March (1977).Google Scholar
- R. G. Larson, L. E. Scriven and H. T. Davis, Chem. Eng. Sci. 36:57, Pergamon Press Ldt, Great Britain (1980).Google Scholar
- 34.R. Lenormand and S. Bories, C.R. Acad. Sc. Paris, 291 B: 279 (1980).Google Scholar
- 35.R. Lenormand and C. Zarcone, to be submitted to Phys. Rev. Lett. (1985).Google Scholar
- 36.D. Wilkinson, Phys. Rev. A 30: 520 (1984).CrossRefGoogle Scholar
- 37.R. Lenormand and C. Zarcone, J. Phys. Chem. Hydr., January (1985).Google Scholar
- 38.L. Paterson, Phys. Rev. Lett. 52–18: 1621 (1984).Google Scholar
- 39.P. G. Saffman and G. I. Taylor, Proc. R. Soc. Lond. A 245–311 (1985).Google Scholar
- S. B. Gorell and G. M. Homsy, S.I.AM, J. Appl. Math. 43–1:79 (1983). A general condition for marginal stability of the S.T. instability including permeability as well as density difference effect is where the subscripts 1,2 refer to the displacing and displaced fluid.Google Scholar
- 40.J. Bear, Dynamics of Fluids in Porous Media, chap. 10, American Elsevier, N.Y. We have benefited from several discussions with J. Koplik on chapter 4 1Google Scholar
- 41.G. I. Taylor in Low Reynolds Number Flows in Illustrated Experiments in Fluid Mechanics, MIT Press (1982) and film of the N.C.F.M. Films.Google Scholar
- 42.We thank J. Feder, U. Oxaal and their group for communication of their unpublished data.Google Scholar
- 43.P. G. Saffman, J. Fl. Mech. 6: 321 (1959).MathSciNetCrossRefGoogle Scholar
- 44.R. Aris, Proc. Roy. Soc. A. 235: 67 (1956).CrossRefGoogle Scholar
- The effect of velocity field is quite different from that of an externally applied field considered by Dhar and Barma for a biased ant walk. In this case the local probabilities are determined by the orientation of bonds with respect to the field (like in trickled bed flows in a gravitational field“). In the present problem, there is a continuum of particles which respond the local field (the local velocity field) which can be obtained only from a knowledge of the connectivity properties.Google Scholar
- 45.M. Crine, P. Marchot and G. L’Homme, Chem. Eng. Comm. 7: 377 (1980).CrossRefGoogle Scholar
- 46.C. D. Catalin and J. Roussenq, work in progress.Google Scholar
- 47.J. M. Hammersley and D.J.A. Welsh, Cont. Phys. 21: 593 (1980).CrossRefGoogle Scholar
- 48.A recent discussion of the so called “Richardson Pair Diffusion” can be found in S. Grossmann and I. Prococcia, Phys. Rev. A 29:1358 (1984).Google Scholar
- 49.This correlation function can be measured by forced Rayleigh Scattering M. Cloitre and E. Gyron, to appear in Jour. F1. Mech.Google Scholar
- 50.G. Matheron, unpublished.Google Scholar
- 51.P. G. de Gennes, J. F1. Mech. 136: 189 (1983).MATHCrossRefGoogle Scholar
- 52.M. Sahimi, H. T. Davis and L. E. Scriven, Chem. Eng. Com. 23: 329 (1983).CrossRefGoogle Scholar
- 53.J. P. Gaudet, Thèse Grenoble (1978).Google Scholar
- 54.L. de Arcangelis, S. Redner and A. Coniglio, preprint.Google Scholar
- 55.A. Dieulin, G. Matheron, G. de Marsily, The Science of Total Environment, 21: 319 (1981).CrossRefGoogle Scholar
- 56.D. L. Koch, J. P. Brady, to be published.Google Scholar