Growth by Particle Aggregation

  • Leonard M. Sander

Abstract

The phenomenon of disorderly nonreversible growth is very common in nature: dust and ash, coral, trees and cities grow into diverse forms far from equilibrium. In many cases a kind of a vague similarity seems to characterize the overall shape of these structures. This review is concerned with some recent attempts to give a description of such growth via simple models. We will present some glimpses of unifying features in their morphology.

Keywords

Fractal Dimension Diffusion Length Particle Aggregation Fractal Growth Dielectric Breakdown 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, R. and Witten, T., 1984a, Phys. Rev. A 29, 2966.Google Scholar
  2. Ball, R. and Witten, T., 1984b, proceedings of The Third Conference on Gaithersburg, Md.Google Scholar
  3. Ben-Jacob, E., Goldenfeld, N., Langer, J.S., and Schön, G., 1983 Phys. Rev. A. Lett. 51, 30.Google Scholar
  4. Ben-Jacob, E., Godbey, R., Goldenfeld, N., Koplik, J., Levine, H., Mueller, T., and Sander, L., 1985, Submitted.Google Scholar
  5. Botet, R., and Jullien, R., 1984, J. Phys. A 17, 2517.Google Scholar
  6. Brady, R. and Ball, R.C., 1984, Nature, 309, 225.Google Scholar
  7. Brower, R., Kessler, D., Koplik, J., and Levine H., 1983, Phys. Rev. Lett. 51, 1111.Google Scholar
  8. Friedlander, S., 1977, “Smoke, Dust, and Haze”, Wiley, New York.Google Scholar
  9. Kantor, Y., Ball, R., and Witten, T., 1984, unpublished.Google Scholar
  10. Kolb, M., Botet, R., and Jullien, R., 1983, Phys. Rev. Lett. 51, 1123.Google Scholar
  11. Kolb, M., 1984, Physique Lett. 45, L211.Google Scholar
  12. Langer, J.S., 1980, Rev. Mod. Phys. 52, 1.Google Scholar
  13. Mandelbrot, B., 1982, “The Fractal Geometry of Nature”, Freeman, New York.MATHGoogle Scholar
  14. Matsushita, M., Sano, M., Hayakawa, Y., Honjo, H., and Sawada, Y., 1984, Phys. Rev. Lett. 53, 286.Google Scholar
  15. Meakin, P., 1983a, Phys. Rev. A 27, 604; 27, 1495.Google Scholar
  16. Meakin, P., 1983b, Phys. Rev. B 28, 5221.Google Scholar
  17. Meakin, P., 1983c, Phys. Rev. Lett. 51, 1119.Google Scholar
  18. Meakin, P., 1984, Phys. Rev. B 29, 3722.Google Scholar
  19. Meakin, P. and Sander, L., 1985, Phys. Rev. Lett., Comments, accepted.Google Scholar
  20. Mullins, W. and Sekerka, R., 1963, J. Appl. Phys. 34, 323.Google Scholar
  21. Nauenberg, M., 1983, Phys. Rev. B 28, 449.CrossRefGoogle Scholar
  22. Nauenberg, M., Richter, R., and Sander, L., 1983, Phys. Rev. B 28, 1649.Google Scholar
  23. Nauenberg, M. and Sander, L., 1984, Physica, 123A, 360.CrossRefGoogle Scholar
  24. Niemeyer, L., Pietronero, L. and Wiesman, H., Phys. Rev. Lett. 52, 1033.Google Scholar
  25. Nittman, J., Daccord, G., and Stanley, H., Nature 314, 141. Paterson, L., 1984, Phys. Rev. Lett. 52, 1621.Google Scholar
  26. Plischke, M. and Racz, Z., 1984, Phys. Rev. Lett. 53, 415.Google Scholar
  27. Sander, L., 1984, in “Kinetics of Aggregation and Gelation”Google Scholar
  28. F. Family and D.P. Landau, ed., North-Holland, New York, p. 13.Google Scholar
  29. Sander, L., Ramanlal, P., and Ben-Jacob, E., 1985, to be published. Vicsek, T., 1984, Phys. Rev. Lett. 53, 2281.Google Scholar
  30. Voss, R., 1984, Phys. Rev. B 30, 334.CrossRefGoogle Scholar
  31. Weitz, D. and Olivera, M., 1984, Phys. Rev. Lett. 52, 1433.Google Scholar
  32. Witten, T. and Sander, L., 1981, Phys. Rev. Lett. 47, 1400.Google Scholar
  33. Witten, T. and Sander, L., 1983, Phys. Rev. B 27, 5686.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Leonard M. Sander
    • 1
  1. 1.Physics DepartmentUniversity of MichiganAnn ArborUSA

Personalised recommendations