Phonon-Fracton Crossover on Fractal Lattices

  • B. W. Southern
  • A. R. Douchant


Recently there has developed a growing interest in the dynamical properties of structures which have a fractal geometryl. Alexander and Orbach2 were the first to point out that three dimensionalities are required to describe excitations on fractals: the embedding (Euclidean) dimension d; the Hausdorf (fractal) dimension D; and the fracton (spectral) dimension \( \tilde d\). The fractal dimension D describes how the mass of the geometrical object depends on length scale whereas the spectral dimension \( \tilde d\) characterizes the low frequency behaviour of the density of states. It is well known3 that percolating networks near the critical threshold p have a self-similar(fractal) geometry on small length scales and a homogeneous(Euclidean) structure on larger scales. The length scale which separates these two regions is the percolation correlation length εp which diverges as pc is approached from above. Orbach et al4,5,6 have recently used scaling arguments and effective medium approximation (EMA) calculations to predict that there is a sharp increase in the density of vibrational states at a crossover frequency ωc which corresponds to excitations with wavelengths of the order of εp. They have conjectured4,5,7 that glasses and perhaps all amorphous materials may exhibit similar behaviour which can be understood in terms of a crossover from phonons to fractons.


Fractal Dimension Lattice Spacing Small Length Scale Fractal Lattice Crossover Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. B. Mandelbrot, “The Fractal Geometry of Nature,” Freeman, San Francisco (1979).Google Scholar
  2. 2.
    S. Alexander and R. Orbach, J.Phys. (Paris) Lett. 43, 625 (1982).CrossRefGoogle Scholar
  3. 3.
    Y. Gefen, A. Aharony, B.B. Mandelbrot and S. Kirkpatrick, Phys. Rev. Lett. 47, 1771 (1981).MathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Alexander, C. Laermans, R. Orbach, and H. M. Rosenberg, Phys. Rev. B28, 4615 (1983).CrossRefGoogle Scholar
  5. 5.
    B. Derrida, R. Orbach, and K.-Wah Yu, Phys. Rev. B29, 6645 (1984).CrossRefGoogle Scholar
  6. 6.
    A. Aharony, S. Alexander, O. Entin-Wohlman, and R. Orbach, Phys. Rev. 831, 2565 (1985).Google Scholar
  7. 7.
    R. Orbach, Geilo Lectures (1985).Google Scholar
  8. 8.
    B.W. Southern, A. Kumar, P.D. Loly, A.-M.S. Tremblay, Phys. Rev. B27, 1405 (1983).MathSciNetCrossRefGoogle Scholar
  9. 9.
    R.W. Southern and P.D. Loly, J. Phys. A18, 525 (1985).Google Scholar
  10. 10.
    R. Stinchcombe, Geilo Lectures (1985).Google Scholar
  11. 11.
    A.-M.S. Tremblay and B.W. Southern, J. Phys. (Paris) Lett. 44, 843 (1983).CrossRefGoogle Scholar
  12. 12.
    A. R. Douchant, M.Sc. Thesis, University of Manitoba, (1985).Google Scholar
  13. 13.
    E. Domany, S. Alexander, D. Bensimon and L.P. Kadanoff, Phys. Rev. B28, 3110 (1983).MathSciNetCrossRefGoogle Scholar
  14. 14.
    R. Rammal, J. Phys. (Paris) 45, 191 (1984).MathSciNetCrossRefGoogle Scholar
  15. 15.
    G.S. Crest and I. Webman, J. Phys. (Paris) Lett. 45, 1155 (1984).CrossRefGoogle Scholar
  16. 16.
    D. Shechtman, I. Blech, D. Gratias and J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar
  17. 17.
    D. Levine and P.J. Steinhardt, Phys. Rev. Lett. 3, 2477 (1984).CrossRefGoogle Scholar
  18. 18.
    P. Bak, Geilo Lectures (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • B. W. Southern
    • 1
  • A. R. Douchant
    • 1
  1. 1.Department of PhysicsUniversity of ManitobaWinnipegCanada

Personalised recommendations