Skip to main content
  • 358 Accesses

Abstract

Fractal symmetry (dilation invariance), as opposed to Euclidean symmetry (translation invariance), requires three dimensionalities to contain a physical description of the excitations of a fractal network: d, the Euclidean (or embedding) dimension; D, the Hausdorff (or fractal) dimension; and EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaary % aaraaaaa!370D!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$\bar \bar d$$, the fracton (or spectral) dimension. The dynamical properties of percolarting networks are examined in this context. The vibrational density of states and the vigrational excitation dispersion law are calculated. The former is shown to be proportional to ωd−1 in the phonon or long length scale reggime. A crossover is found at frequency ωc, proportional to (p−pc)v[1+(θ/2)], where p is the bond occupancy probability and pc the critical percolation bond occupancy. Here, v is the correlation fength exponent, and θ is the exponent appropriate to the range dependence of the diffusion constant [D(r) ∝ r−θ]. At ωc, a scaling argument shows that a reasonably rapid rise occurs in the vibrational density of states, to which we shall refer as a “fracton edge.” For frequencies higher than ωc, the vibrational density of states continues to rise, but at a slower rate, proportional to EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW % baaSqabeaaceWGKbGbaeHbaebacqGHsislcaaIXaaaaaaa!3AAF!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${\omega ^{\bar \bar d - 1}}$$. The excitations in this regime are termed “fractons.” It is shown that the electrical conductance on a fractal network also depends on D and EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaary % aaraaaaa!370D!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$\bar \bar d$$ . Use is made of Anderson localization scaling theory to show that, for EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaary % aaraaaaa!370D!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$\bar \bar d$$ < 2, the fracton eigenstates are localized. Very recent inelastic neutron diffraction measurements of the vibrational excitations of fused silica are shown to exhibit a density of states which agrees in form remarkably closely with a recent scaling model of phonon to fracton crossover.

The vibrational dispersion law also exhibits the effects of crossover. At long length scales, the dispersion law is linear, with a sound velocity proportional to (p−pc)vθ/2. Near crossover, the dispersion curve reduces its slope, exhibits an inflexion point, and then rises as the EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaac+ % caceWGKbGbaeHbaebaaaa!3889!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$D/\bar \bar d$$ power of the inverse length scale.

These results suggest that conventional electron-phonon interactions may be strongly modified on a fractal network. We have analyzed the two cases of localized electron-one fracton interaction, and a localized electron-two fracton interaction. To do so, we have had to take explicit account of the spatial extent of the vibrational wave function. This has necessitated the introduction of a fourth dimensionality, dΦ, which determines the pythagorean range of the localized fracton wavefunction. The electronic relaxation rate differs from electronic site to electronic site. We are able to calculate the probability density for the electronic relaxation rate. The lack of a single relaxation rate results in a significant departure from an exponential time decay of the electronic departure from equilibrium. We find a time dependence which is faster than power law, but slower than exponential or stretched exponential. We suggest that these theoretical results call into question interpretations of phenomena involving electron-vibrational interactions in glassy materials which have been based on extended phonon states. We recalculate the energy and temperature dependence for the inelastic scattering time for extended electron states. Our results exhibit marked departure from those obtained with extended (and localized) phonon states.

We suggest a variety of calculations and experiments which can further elucidate the affect of fracton excitations on physical properties. We believe that fracton excitations may be relevant to some glassy materials above a crossover frequency. These excitations can have a profound influence on the vibrational density of states and the dynamics associated with electron-vibration interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. B. Mandelbrot, “The Fractal Geometry of Nature,” W. H. Freeman and Co., New York (1983); Ann. Isr. Phys. Soc. 5: 59 (1983).

    MathSciNet  Google Scholar 

  2. S. Alexander, C. Laermans, R. Orbach, and H. M. Rosenberg, Phys. Rev. B28: 4615 (1983).

    Article  Google Scholar 

  3. S. Alexander and R. Orbach, J. Phys. (Paris) Lett. 43:L-625 (1982).

    Google Scholar 

  4. R. Rammal and G. Toulouse, J. Phys. (Paris) Lett. 44:L-13 (1983).

    Google Scholar 

  5. A. Kapitulnik and G. Deutscher, Phys. Rev. Lett. 49: 1444 (1982).

    Article  Google Scholar 

  6. R. F. Voss, R. B. Laibowitz, and E. I. Allessandrini, Phys. Rev. Lett. 49: 1441 (1982).

    Article  Google Scholar 

  7. A. Aharony, S. Alexander, O. Entin-Wohlman, and R. Orbach, Phys. Rev. B31: 2565 (1985).

    Article  Google Scholar 

  8. Y. Gefen, A. Aharony, and S. Alexander, Phys. Rev. Lett. 50: 77 (1983).

    Article  Google Scholar 

  9. P. G. de Gennes, Recherche 7: 919 (1976).

    Google Scholar 

  10. E. W. Montroll, “Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability,” Univ. of Calif., Berkeley, (1955), p. 209.

    Google Scholar 

  11. S. Alexander, J. Bernasconi, W. Schneider, and R. Orbach, Rev. Mod. Phys. 53: 175 (1981).

    Article  MathSciNet  Google Scholar 

  12. S. Kelham and H. M. Rosenberg, J. Phys. C14:1737 (1981); C. I. Nichols and H. M. Rosenberg, J. Phys. C17: 1165 (1984);

    Google Scholar 

  13. D. E. Farrell, J. E. de Oliveira, and H. M. Rosenberg, “Phonon Scattering in Condensed Matter,” ed. by W. Eisenmenger et al., Springer, Berlin (1984), p. 422.

    Book  Google Scholar 

  14. B. Derrida, R. Orbach, and K.-Wah Yu, Phys. Rev. B29: 6645 (1984).

    Article  Google Scholar 

  15. S. Feng and P. N. Sen, Phys. Rev. Lett. 52: 216 (1984).

    Article  Google Scholar 

  16. Y. Kantor and I. Webman, Phys. Rev. Lett. 52: 1891 (1984).

    Article  Google Scholar 

  17. D. J. Bergman and Y. Kantor, Phys. Rev. Lett. 53: 511 (1984).

    Article  MathSciNet  Google Scholar 

  18. P. G. de Gennes, J. Phys. (Paris) Lett. 37: L1 (1976).

    Article  Google Scholar 

  19. K.-W. Yu, P. Chaikin, and R. Orbach, Phys. Rev. B28: 4831 (1983).

    Article  Google Scholar 

  20. I. Webman and G. S. Grest, Phys. Rev. B31: 1690 (1985).

    Google Scholar 

  21. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42: 673 (1979).

    Article  Google Scholar 

  22. Entin-Wohlman, S. Alexander, R. Orbach, and K.-Wah Yu, Phys. Rev. B29: 4588 (1984).

    Article  Google Scholar 

  23. R. C. Zeller and R. O. Pohl, Phys. Rev. B4: 2029 (1971).

    Article  Google Scholar 

  24. M. P. Zaitlin and A. C. Anderson, Phys. Rev. B12: 4475 (1975).

    Article  Google Scholar 

  25. U. Strom, J. R. Hendrickson, R. J. Wagner, and P. C. Taylor, Sol. St. Comm. 15: 1871 (1974).

    Article  Google Scholar 

  26. R. Orbach, J. Stat. Phys. 36: 735 (1984).

    Article  MathSciNet  Google Scholar 

  27. U. Buchenau, N. Nucker, and A. J. Dianoux, Phys. Rev. Lett. 53: 2316 (1984).

    Article  Google Scholar 

  28. A. F. Ioffe and A. R. Regel, Prog. Semicond. 4, 237 (1960).

    Google Scholar 

  29. H. M. Rosenberg, Phys. Rev. Lett. 54: 704 (1985).

    Article  Google Scholar 

  30. R. Orbach and H. M. Rosenberg, “LT-17,” ed. by U. Eckern, A. Schmid, W. Weber, and H. Wühl, Elsebier Science Publishers B. V., Amsterdam (1984), p, 375.

    Google Scholar 

  31. Y.-E. Levy and B. Souillard, unpublished.

    Google Scholar 

  32. K. M. Middlemiss, S. G. Whittington, and D. S. Gaunt, J. Phys. A: Math. Gen. 13: 183S (1980);

    Google Scholar 

  33. R. Pike and H. E. Stanley, J. Phys. A: Math. Gen. 14: L169 (1981);

    Article  Google Scholar 

  34. D. C. Hong and H. E. Stanley, J. Phys. A: Math. Gen. 16:L475 (1983); D. C. Hong and H. E. Stanley, J. Phys. A: Math. Gen. 16: L525 (1983);

    Article  Google Scholar 

  35. H. J. Hermann, D. C. Hong, and H. E. Stanley, J. Phys. A: Math. Gen. 17: L261 (1984);

    Article  Google Scholar 

  36. J. Vannimenus, J. P. Nodal, and C. Martin, J. Phys. A: Math. Gen. 17: L351 (1984);

    Article  Google Scholar 

  37. S. Havlin and R. Nossal, J. Phys. A: Math. Gen. 17: L427 (1984);

    Article  MathSciNet  Google Scholar 

  38. S. Havlin, Z. V. Djordjevic, I. Majid, H. E. Stanley, and G. H. Weiss, Phys. Rev. Lett. 53: 178 (1984).

    Article  Google Scholar 

  39. H. J. Stapleton, J. P. Allen, C. P. Flynn, D. G. Stinson, and S. Kurtz, Phys. Rev. Lett. 45: 1456 (1980);

    Article  MathSciNet  Google Scholar 

  40. J. P. Allen, J. T. Colvin, D. G. Stinson, C. P. Flynn, and H. J. Stapleton, Biophys. J. 38: 299 (1982).

    Article  Google Scholar 

  41. J. Szeftal and H. Alloul, Phys. Rev. Lett. 34:657 (1975); J. Non-Cryst. Sol. 29: 253 (1978).

    Article  Google Scholar 

  42. S. Alexander, O. Entin-Wohlman, and R. Orbach, submitted to J. Phys. (Paris) Lett. for publication (1985).

    Google Scholar 

  43. S. Alexander, O. Entin-Wohlman, and R. Orbach, submitted to J. Phys. (Paris) Lett. for publication (1985).

    Google Scholar 

  44. S. Alexander, O. Entin-Wohlman, and R. Orbach, submitted to Phys. Rev. B-15 for publication (1985).

    Google Scholar 

  45. S. Alexander, O. Entin-Wohlman, and R. Orbach, submitted to Phys. Rev. B-15 for publication (1985).

    Google Scholar 

  46. S. Alexander, O. Entin-Wohlman, and R. Orbach, to be submitted for publication, 1985.

    Google Scholar 

  47. J. Tauc, private communication.

    Google Scholar 

  48. R. Orbach and H. J. Stapleton, “Electronic Paramagnetic Resonance,” ed. by S. Geschwind, Plenum Press, New York (1972), p. 121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Orbach, R. (1991). Excitations of/on Fractal Networks. In: Pynn, R., Skjeltorp, A. (eds) Scaling Phenomena in Disordered Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1402-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1402-9_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1404-3

  • Online ISBN: 978-1-4757-1402-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics