A Stochastic Model of Spin Glass Dynamics

  • Paolo Sibani


A theory of spin glass relaxation based on some assumptions about the ground-state morphology and some scaling hypothesis is presented. It yields a closed formula for the AC and time-dependent susceptibilities in close agreement with the experimental results.


Spin Glass Stable Distribution Closed Formula Spin Glass Model Connected Patch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Barahona, R. Maynard, R. Rammal and J.P. Uhry, J. Phys. A15: 673 (1982).MathSciNetGoogle Scholar
  2. 2.
    J. Vannenimus, J.M. Maillard and L. de Sèze, J. Phys. C12: 4532 (1979).Google Scholar
  3. 3.
    P. Sibani and J.A. Hertz, to appear in J. Phys. A (Nordita preprint 84/40).Google Scholar
  4. 4.
    P. Sibani, to appear in J. Phys. A (Nordita preprint 85/8).Google Scholar
  5. 5.
    W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, Wiley, New York (1971).zbMATHGoogle Scholar
  6. 6.
    R.G. Palmer, Adv. Phys. 31: 669 ( 1983CrossRefGoogle Scholar
  7. R.G. Palmer, in: Springer Lecture Notes in Physics 192(1983).Google Scholar
  8. 7.
    I. Morgenstern and K. Binder, Phys. Rev. Lett. 43: 1615 (1979).CrossRefGoogle Scholar
  9. 8.
    I. Morgenstern and H. Horner, Phys. Rev. B25: 504 (1982).Google Scholar
  10. 9.
    L. Lundgren, P. Svedlindh and O. Beckman, J. Magn. Magn. Mat. 15: 33 (1981).CrossRefGoogle Scholar
  11. 10.
    A.J. van Duyneveldt and C.A.M. Mulder, Physica 1148: 82 (1982).Google Scholar
  12. 11.
    C. Pappa, J. Hammann, G. Jehanno and C. Jacoboni, Saclay preprint DPhG/SPSRM184–75 (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Paolo Sibani
    • 1
  1. 1.Copenhagen øDenmark

Personalised recommendations