Dynamical Scaling in a Model Structural Glass

  • Eric Courtens


There is a current active debate on the mechanisms of freezing in model glasses. Experimental freezing temperatures, derived from susceptibilities, are often found to vary approximately linearly with the logarithm of the measuring frequency. The theoretical problem being far from settled, experiments are much in need. To be definitive, they must cover extremely broad frequency ranges. The present paper summarizes the experimental situation for a model glass,1 mixed crystals of rubidium-ammonium dihydrogen phosphate, which have allowed measurements covering an unprecedented 17 orders of magnitude in frequency.2,3 The experimental results indicate that dynamics derived from the Vogel-Fulcher (VF) law4 provide the most appropriate phenomenological description, while dynamics adapted from other current theoretical models of spin-glasses5,6 seem inadequate for this system.


Spin Glass Dihydrogen Phosphate Mixed Crystal Potassium Dihydrogen Phosphate Model Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Courtens, J. Phys. (Paris) Lett. 43:L-199 (1982).Google Scholar
  2. 2.
    Eric Courtens, Phys. Rev. Lett. 52:69 (1984).CrossRefGoogle Scholar
  3. 3.
    Eric Courtens and Hans Vogt, to be published.Google Scholar
  4. 4.
    H. Vogel, Z. Phys. 22:645 (1921); G. S. Fulcher, J. Am. Ceram. Soc. 8:339 (1925).Google Scholar
  5. 5.
    K. Binder and A. P. Young, Phys. Rev. B 29:2864 (1984);Google Scholar
  6. W. Kinzel and K. Binder, Phys. Rev. B 29:1300 (1984).Google Scholar
  7. 6.
    N. Bontemps, J. Rajchenbach, R. V. Chamberlin, and R. Orbach, Phys. Rev. B 30:6514 (1984).CrossRefGoogle Scholar
  8. 7.
    Eric Courtens, François Huard, and René Vacher, to be published.Google Scholar
  9. 8.
    S. F. Edwards and P. W. Anderson, J. Phys. F 5:965 (1975).Google Scholar
  10. 9.
    R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, Phys. Rev. Lett. 53:958 (1984).Google Scholar
  11. 10.
    E. Courtens, T. F. Rosenbaum, S. E. Nagler, and P. M. Horn, Phys. Rev. B 29:515 (1984).Google Scholar
  12. 11.
    R. A. Cowley, T. Ryan, and E. Courtens, to be published.Google Scholar
  13. 12.
    S. Hayase, T. Futamura, H. Sakashita, and H. Terauchi, J. Phys. Soc. Japan 54:812 (1985);Google Scholar
  14. S. Iida and H. Terauchi, J. Phys. Soc. Japan 52:4044 (1983);Google Scholar
  15. H. Terauchi, T. Futamura, Y..Nishihata, and S. Iida, J. Phys. Soc. Japan 53:483 (1984).Google Scholar
  16. 13.
    H. Grimm, K. Parlinski, H. Arend, E. Courtens, and W. Schweika, to be published.Google Scholar
  17. 14.
    J. L. Tholence, Solid State Commun. 35: 113 (1980).CrossRefGoogle Scholar
  18. 15.
    Eric Courtens, to be published.Google Scholar
  19. 16.
    Eric Courtens and Hans Vogt, J. Chim. Phys. (Paris) to be published.Google Scholar
  20. 17.
    J. Slak, R. Kind, R. Blinc, E. Courtens, and S. Žumer, Phys. Rev. B 30:85 (1984).CrossRefGoogle Scholar
  21. 18.
    K. Binder, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Eric Courtens
    • 1
  1. 1.IBM Zurich Research LaboratoryRüschlikonSwitzerland

Personalised recommendations