Skip to main content

Abstract

We study the aggregation of aqueous gold colloids and apply modern scaling methods to interpret our results. We find that there are two regimes of aggregation, each with different rate-limiting physics, depending on the sticking probability of the individual colloidal particles. Each regime is distinguished by the fractal dimension of the resultant clusters, the aggregation dynamics and the cluster-mass distribution. The two regimes are diffusion-limited cluster aggregation and reaction-limited aggregation; and the two represent the two limiting universality classes for kinetic cluster-cluster aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).

    Article  Google Scholar 

  2. Kinetics of Aggregation and Gelation“ ed. by F. Family and D. P. Landau (North Holland, Amsterdam 1984).

    Google Scholar 

  3. B. V. Enustin and J. Turkevitch, J. Am. Chem. Soc. 85, 3317 (1963).

    Article  Google Scholar 

  4. E. J. W. Verwey and J. Th. G. Overbeek “Theory of the Stability of Lyophobic Colloids,” (Elsevier, NY 1948 ).

    Google Scholar 

  5. D. A. Weitz, M. Y. Lin and C. J. Sandroff, Surf. Sci., to appear.

    Google Scholar 

  6. J. Turkevitch, A. Garton and P. C. Stevenson, J. Colloid Sci. 9, 26 (1954).

    Article  Google Scholar 

  7. J. A. Creighton, C. B. Blatchford and M. B. Albrecht, J. Chem. Soc. Faraday Trans. II 75, 790 (1979).

    Article  Google Scholar 

  8. D. A. Weitz and M. Oliveria, Phys. Rev. Lett. 52, 1433 (1984).

    Article  Google Scholar 

  9. B. B. Mandelbrot, “The Fractal Geometry of Nature” ( Freeman, San Francisco, 1982 ).

    MATH  Google Scholar 

  10. M. Y. Lin and D. A. Weitz, to be published.

    Google Scholar 

  11. D. W. Schaefer, J. E. Martin, P. Wiltzius and D. S. Cannell, Phys. Rev. Lett. 52, 2371 (1984).

    Article  Google Scholar 

  12. S. K. Sinha, T. Freltoft and J. Kjems in Ref. 2, p 87.

    Google Scholar 

  13. S. K. Sinha, D. A. Weitz, J. S. Huang, M. Y. Lin, J. S. Gethner and R. Pynn, to be published.

    Google Scholar 

  14. D. A. Weitz, J. S. Huang, M. Y. Lin and J. Sung, Phys. Rev. Lett. 54, 1416 (1985).

    Article  Google Scholar 

  15. P. Meakin, Phys. Rev. Lett. 51, 1119 (1983).

    Article  Google Scholar 

  16. M. Kolb, R. Botet and R. Jullien, Phys. Rev. Lett. 51, 1123 (1983).

    Article  Google Scholar 

  17. D. A. Weitz, J. S. Huang, M. Y. Lin and J. Sung, Phys. Rev. Lett. 53, 1657 (1984).

    Article  Google Scholar 

  18. B. J. Berne and R. Pecora, “Dynamic Light Scattering” ( Wiley, New York, 1976 ).

    Google Scholar 

  19. J. E. Martin and B. J. Ackerson, preprint.

    Google Scholar 

  20. M. Von Smoluchowski, Phys. Z. 17, 557, 585 (1916).

    Google Scholar 

  21. P. Meakin, Z. Y. Chen and J. M. Deutch, J. Chem. Phys. 82, 3786 (1985).

    Article  Google Scholar 

  22. R. J. Cohen and G. B. Benedeck, J. Phys. Chem. 86, 3696 (1982).

    Article  Google Scholar 

  23. S. K. Friedlander and C. S. Wang, J. Colloid and Interface Sci., 22, 126 (1966).

    Article  Google Scholar 

  24. D. A. Weitz and J. S. Huang, in Ref. 2, p. 19.

    Google Scholar 

  25. R. C. Ball, D. A. Weitz, T. A. Witten and F. Leyvraz, to be published.

    Google Scholar 

  26. R. Jullien, M. Kolb and R. Botet, J. Phys. Lett. 45, L211 (1984).

    Article  Google Scholar 

  27. W. D. Brown and R. C. Ball, to be published.

    Google Scholar 

  28. R. C. Bull and T. A. Witten, J. Stat. Phys. 36, 873 (1984).

    Article  Google Scholar 

  29. F. Leyvraz, Phys. Rev. A29, 854 (1984).

    Article  Google Scholar 

  30. P. G. J. Van Dongen and M. H. Ernst, Phys. Rev. Lett. 54, 1396 (1985).

    Article  Google Scholar 

  31. G. K. von Schulthess, G. B. Benedek and R. W. DeBlois, Macromolecules 13, 939 (1980).

    Article  Google Scholar 

  32. D. Johnston and G. B. Benedek, Ref. 2, p. 181.

    Google Scholar 

  33. J. Feder, T. Jossang and E. Rosenqvist, Phys. Rev. Lett. 53, 1403 (1984) and J. Feder and T. Jossang, this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weitz, D.A. et al. (1991). Scaling in Colloid Aggregation. In: Pynn, R., Skjeltorp, A. (eds) Scaling Phenomena in Disordered Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1402-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1402-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1404-3

  • Online ISBN: 978-1-4757-1402-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics