Theory of the Quasi One-Dimensional Band Conductor

  • M. J. Rice
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 7)

Abstract

Chiefly simplified discussion of the (meanfield) Peierls transition; nearly-divergent density response of the 1-d conduction electron system at 2kF; its consequences for the stability of a hypothetical 1-d metal; derivation of Tc; calculation of distortion amplitude and energy gap below Tc.

Keywords

Conduction Electron Charge Density Wave Density Response Linear Lattice Normal Mode Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. 1.
    H. Fröhlich, Proc. Roy. Soc. A223, 296 (1954); see also C. G. Kuper, Proc. Roy. Soc. A227, 214 (1955).Google Scholar
  2. 2.
    R. E. Peierls, “Quantum Theory of Solids”, ( Clarendon Press, Oxford, 1955 ) p. 108.Google Scholar
  3. 3.
    For a review see H. R. Zeller, Festkörperprobleme 13, 31–58 (1973).Google Scholar
  4. 4.
    M. J. Rice and S. Strässler, Solid State Commun. 13, 125 (1973).CrossRefGoogle Scholar
  5. 5.
    P. A. Lee, T. M. Rice and P. W. Anderson, Solid State Commun. 14, 703 (1974).CrossRefGoogle Scholar
  6. 6.
    M. J. Rice, S. Strässler and W. R. Schneider, “Some Fluctuation and Electrodynamic Properties of the Peierls-Fröhlich Conductor”, to be published in the Proceedings of the German Physical Society Conference on “One-Dimensional Conductors”, University of Saarbrücken, 10–12 July, 1974. ( Editor H. G. Schuster).Google Scholar
  7. 7.
    We neglect here the periodicity of the underlying linear lattice.Google Scholar
  8. 8.
    See, for example, D. Pines and P. Nozières, “The Theory of Quantum Liquids, 1: Normal Fermi Liquids”, (Benjamin, New York, 1966 ).Google Scholar
  9. 9.
    Ref. 8, p. 237.Google Scholar
  10. 10.
    The mathematical structure of the mean field theory of the Peierfs-Fröhlich transition is in fact identical to that of the BCS theory of the pairing superconductor (J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957)).Google Scholar
  11. 11.
    D. Allender, J. W. Bray and J. Bardeen, Phys. Rev. B9, 119 (1974); J. Bardeen, Solid State Commun. 13, 1389 (1973).Google Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • M. J. Rice
    • 1
  1. 1.Xerox Webster Research Center WebsterN.Y.USA

Personalised recommendations