Skip to main content

Basic Principles and Concepts in the Physics of Low Dimensional Cooperative Systems

  • Chapter
Low-Dimensional Cooperative Phenomena

Part of the book series: Nato Advanced Study Institutes Series ((NSSB,volume 7))

Abstract

This NATO institute is devoted to a study of quasi- one and two dimensional systems which exhibit strong electronic correlations. Low dimensionality and strong interactions may lead to many fascinating quasi- ordered states in solids, e.g. magnetism, super conductivity, Peierls distortions, charge or spin density waves, etc. This presentation shall attempt to introduce to students or other non-solid state scientists some of the basic ideas which the author has found to be useful and relevant for thinking and visualizing the systems under investigation. We shall usually not reproduce detailed calculations which we already have available in the literature, but rather attempt to give a feeling for the physical arguments which lead to the predicted results. While our emphasis will lie with theory, the models considered are direct manifestations of the experimentally known nature of the systems under study. We shall present very little detailed experimental results; these have been reviewed by Shchegolev,(1) for the highly conducting ld systems, and by DeJongh and Hiedema(2) and Hone and Richards(3) for the lower dimensionality magnetic systems. Of course, at this institute I expect that much of the most recent work will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.F. Shchegolev, Phys. Stat. Sol. 12, 9 (1972).

    CAS  Google Scholar 

  2. L.J. DeJongh and A.R. Midema, Adv. in Physics 23, 1 (1974).

    Google Scholar 

  3. D.W. Hone and P.M. Richards, To be Published in Ann. Rev. of Material Science, 4.

    Google Scholar 

  4. A good discussion of the Ising model may be found in K. Huang, Statistical Mechanics, (J. Wiley and Sons, New York, 1963 ), Chapters 16, 17.

    Google Scholar 

  5. M.E. Fisher, Am. J. Phys. 32, 343 (1964).

    Article  Google Scholar 

  6. M.T. Hutchings, G. Shirane, R.J. Birgeneau, and S.L. Holt, Phys. Rev. B5, 1999 (1972).

    Google Scholar 

  7. D.J. Scalapino, M. Sears, and R.A. Ferrell, Phys. Rev. B6, 3409 (1972).

    Article  CAS  Google Scholar 

  8. This estimate neglects (a) the fact that the domain must have a closed perimeter, and (b) that some perimeter points have 2 reversed near neighbors. For sufficiently large P these effects are small.

    Google Scholar 

  9. L. Onsager, Phys. Rev. 65, 117 (1944).

    Article  CAS  Google Scholar 

  10. For a good discussion see Daniel C. Mattis, The Theory of Magnetism, ( Harper and Row, New York, 1965 ) Chapter 8.

    Google Scholar 

  11. J.W. Stout and R.C. Chisholm, J.Chem. Phys. 36, 979 (1962) have treated the Ising Model. The method has been elaborated and extended to other magnetic systems as well as coupled superconducting strands by D.Scalapino, Y. Imry, P. Pincus, To Be Published.

    Google Scholar 

  12. This is established by nuclear quadrapole resonance experiments in Li+ TCNQ- by J. Murgich and S. Pissanetzky, Chem. Phys. Letters 18, 420 (1973).

    Google Scholar 

  13. There also exist stacked structures of the type cation-anioncation-anion; e.g TMPD+ - TCNQ-. We shall not discuss these further here becuase they are intrinsfcally semiconducting not metallic.

    Google Scholar 

  14. C.J. Fritchie, Acta Cryst. 20, 892 (1966).

    Article  CAS  Google Scholar 

  15. P. Pincus, Solid State Comm. 11, 51 (1972).

    Article  CAS  Google Scholar 

  16. P. Chaikin, A.F. Garito, and A.J. Heeger, Phys. Rev. B5, 4966 (1972) P. Chaikin, A.F. Garito, and A.J. Heeger, J. Chem. Phys. 58, 2336 (1973).

    Article  CAS  Google Scholar 

  17. See for example C. Kittel, Quantum Theory of Solids, (J. Wiley and Sons, Inc., New York, 1964 ) Chapt. 5.

    Google Scholar 

  18. For the case of TTF-TCNQ, t has been calculated by A.J. Berlinsky, J.F. Carolan, and L.Weiler, [Solid State Comm., To be Published], to be about 0.1ev.

    Google Scholar 

  19. J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963); A237 (1963); A281, 401 (1964).

    Google Scholar 

  20. J. Kanamori, Prog. Theo. Physics (Kyoto) 30, 275 (1963).

    Article  CAS  Google Scholar 

  21. J.G. Vegter, J. Kommandeur, and P.A. Fedders, Phys. Rev. B7, 2929 (1973); J.G. Vegter and J. Kommandeur, Phys. Rev. B9, 5150 (1974).

    Google Scholar 

  22. R.E. Peierls, Quantum Theory of Solids, (Oxford Univ. Press, London, 1955 ), Chapter V.

    Google Scholar 

  23. Indeed G. Beni, Solid State Comm., To Be Published, has shown that if d>l, the electron bandwidth arising from transfer between strands tends very strongly to supress the instability.

    Google Scholar 

  24. J.G. Vegter, P.I. Kuindersma, and J. Kommadandeur, in N. Klein, D.S. Tannhauser, and M. Pollak, eds. Conduction in Low Mobility Materials, ( Taylor and Francis Ltd., London, 1971 p. 213.

    Google Scholar 

  25. L.B. Coleman, M.J. Cohen, D.J. Sandman, F.G. Yamagishi, A.F. Garito, and A.J. Heeger, Solid State Comm. 12, 1125 (1973); D.B. Tanner, C.S. Jacobsen, A.F. Garito, and A.J. Heeger, Phys. Rev. Letters 32, 1301 ( 1974 ); M.J. Cohen, L.B. Coleman, A.F. Garito, and A.J. Heeger, Phys. Rev. B. To Be Published.

    Google Scholar 

  26. A.J. Epstein, S. Etemad, A.F. Garito, and A.J. Heeger, Phys. Rev. B5, 952 (1972).

    Article  Google Scholar 

  27. N.F. Mott, Proc. Phys. Soc. (London) A62, 416 (1949).

    Google Scholar 

  28. A. Bloch, R.B. Wiseman, and C.M. Varma, Phys. Rev. Letters 28, 753 (1972).

    Article  Google Scholar 

  29. R.E. Borland, Proc. Phys. Soc. London 78, 926 (1901) N.F. Mott and W.D. Twose, Advan. Phys. 10, 107 (1961)

    Google Scholar 

  30. N.F. Mott, Phil. Mag. 19, 835 (1969); V. Ambegaokar, B.I. B.I. Halperin, and J.S. Langer, Phys. Rev. B4, 2612 (1971).

    Article  Google Scholar 

  31. E. Ehrenfreund, S. Etemad, L.B. Coleman, E.F. Rybaczewski, A.F. Garito, and A.J. Heeger, Phys. Rev. Letters 29, 269 (1972).

    Article  CAS  Google Scholar 

  32. Of course the dimer Hubbard model (C.3) is exactly soluble. See article by P. Pincus in de Laredo and Jurisic, (eds) Selected Topics in Physics, Astrophysics, and Biophysics ( D. Reidel, Dordecht, 1973 ).

    Google Scholar 

  33. J. des Cloizeaux and J. Pearson, Phys. Rev. 128, 2131 (1962).

    Article  Google Scholar 

  34. P. Pincus, Solid State Comm. 9, 1971 (1971); G. Beni and P. Pincus, J. Chem. Phys. 57, 3531 (1972); G. Beni, J. Chem. Phys. 58, 3200 (1973).

    Google Scholar 

  35. Experimental arguments for U ti t in the alkali salts is given by S. K. Khanna, A.A.Bright, A.F. Garito and A.J. Heeger, Phys. Rev. To Be Published.

    Google Scholar 

  36. An excellent general review of the electronic properties and spin dynamics in the TCNQ salts will appear in Z. Soos, Ann. Rev. Phys. Chem. 25, (1974) To Be Published.

    Google Scholar 

  37. A. Ovchinnikov, Soviet Physics JETP 30, 1160 (1970) has calculated exactly the low lying excitations in this model of both the conducting and triplet types. Indeed he finds that so long as U>0, the uniform chain is a semiconductor.

    Google Scholar 

  38. C.F. Coll III, Phys. Rev. B9, 2150 (1974).

    Article  CAS  Google Scholar 

  39. A.A. Ovchinnikov, I.I. Ukrainskii, and G.V. Kventsel, Soviet Physics Uspekhi 15, 575 (1973).

    Article  Google Scholar 

  40. G. Beni and P. Pincus, Phys. Rev. B9, 2963 (1974).

    Article  CAS  Google Scholar 

  41. A.A. Bright, A.F. Garito, and A.J. Heeger, Solid State Comm. 13, 943 (1973). A.A.Bright, A.F. Garito, and A.J. Heeger, Phys. Rev. B. To Be Published.

    Google Scholar 

  42. P.M. Grant, R.L. Greene, G.C. Wrighton, and G. Castro, Phys. Rev. Letters 31, 1311 (1973).

    Article  CAS  Google Scholar 

  43. P. F. Williams and A.N. Bloch, Phys. Rev. B10, 1097 (1974).

    Article  CAS  Google Scholar 

  44. H. Gutfreund, B. Horovitz and M. Weger, Solid State Comm. To Be Published.

    Google Scholar 

  45. The detailed study of small polaron motion has been carried out by T. Holstein and his coworkers in precisely this model. See for example: T. Holstein, Ann. Phys. 8, 325 (1959); T. Holstein, Ann. Phys. 8, 343 (1959); L. Freedman and T. Holstein, Ann. Phys. 21, 494 (1963); D. Emin and T. Holstein, Ann. Phys. 53, 439 (1969).

    Google Scholar 

  46. The details depend somewhat on the nature of the extra degree of freedom to which the electron is coupled. The result given here assumes that this is a simple harmonic oscillator. R. Bari, Phys. Rev. Letters 30, 790 (1973) has considered the opposite limit of a two level system which he feels is more suited for the excitonic polarons.

    Google Scholar 

  47. G. Beni, P. Pincus, and J. Kanamori, Phys. Rev. To Be Published.

    Google Scholar 

  48. R. Bari, Phys. Rev. B9, 4329 (1974).

    Article  CAS  Google Scholar 

  49. C.F. Coll III, and G7Theni, Solid State Comm., To Be Published.

    Google Scholar 

  50. As a first step in this direction see A.F. Garito and A.J. Heeger, Accounts of Chem. Res. 7, 232 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pincus, P. (1975). Basic Principles and Concepts in the Physics of Low Dimensional Cooperative Systems. In: Keller, H.J. (eds) Low-Dimensional Cooperative Phenomena. Nato Advanced Study Institutes Series, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1399-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1399-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1401-2

  • Online ISBN: 978-1-4757-1399-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics