Advertisement

Integrable representations and the Weyl group of a Kac-Moody algebra

  • Victor G. Kac
Part of the Progress in Mathematics book series (PM, volume 44)

Abstract

In this chapter we begin a systematic study of the Kac-Moody algebras. Recall that this is the Lie algebra g(A) associated to a generalized Cartan matrix A. The main object of the chapter is the Weyl group W of a Kac-Moody algebra, which is a generalization of the classical Weyl group in the finite-dimensional theory. However, in contrast to the finite-dimensional case, W is infinite and the union of the W-translates of the fundamental chamber is a convex cone, not the whole Cartan subalgebra h.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes and comments

  1. Kac, V. G. [1968 B] Simple irreducible graded Lie algebras of finite growth, English translation: Math. USSRIzvestija 2 (1968), 1271–1311.Google Scholar
  2. Moody, R. V. [1968] A new class of Lie algebras, J. Algebra 10 (1968), 211–230.MathSciNetCrossRefGoogle Scholar
  3. Frenkel, I. B., Kac, V. G. [1980] Basic representations of affine Lie algebras and dual resonance models, Invent. Math., 62 (1980), 23–66.MathSciNetzbMATHGoogle Scholar
  4. Tits, J. [1981] Resumé de cours, Annuaire du Collège de France 1980–81, Collège de France, Paris.Google Scholar
  5. Vinberg, E. B. [1971] Discrete linear groups generated by reflections, Izvestija AN USSR (ser. mat.) 35 (1971), 1072–1112.MathSciNetzbMATHGoogle Scholar
  6. Vinberg, E. B. [1971] Discrete linear groups generated by reflections, English translation: Math. USSRIzvestija 5 (1971), 1083–1119.Google Scholar
  7. Looijenga, E. [1980] Invariant theory for generalized root systems, Inventiones Math. 61 (1980), 1–32.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Kac, V. G., Peterson, D. H. [1983 A] Infinite dimensional Lie algebras, theta functions and modular forms, Advances in Math., 50 (1983).Google Scholar
  9. Piatetsky-Shapiro, I. I., Shafarevich, I. R. [1971] A Torelli theorem for algebraic surfaces of type K3, Izvestija AN USSR (Ser. Mat.) 35 (1971), 530–572.Google Scholar
  10. Feingold, A. J., Frenkel, I. B. [1983] A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus 2, Math. Ann. 263, (1983), 87–144.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Kac, V. G., Peterson, D. H. [1983 B] Regular functions on certain infinite dimensional groups, in Arithmetic and Geometry, (ed. M. Artin and J. Tate ), 141–166, Birkhäuser, Boston, 1983.Google Scholar
  12. Kac, V. G., Peterson, D. H. [1983 C] Unitary structure in representations of infinite-dimensional groups and a convexity theorem, MIT, preprint.Google Scholar
  13. Kac, V. G. [1969 B] An algebraic definition of compact Lie groups, Trudy MIEM, No. 5, 1969, 36–47 (in Russian).Google Scholar
  14. Moody, R. V., Teo, K. L. [1972] Tits systems with crystallographic Weyl groups, J. Algebra 21 (1972), 178–190.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Marcuson, R. [1975] Tits’ system in generalized non-adjoint Chevalley groups, J. Algebra 34 (1975), 84–96.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Victor G. Kac
    • 1
  1. 1.Mathematics DepartmentMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations