Integrable highest weight modules over affine Lie algebras. Application to η-function identities

  • Victor G. Kac
Part of the Progress in Mathematics book series (PM, volume 44)


In the last three chapters we developed a representation theory of arbitrary Kac-Moody algebras. From now on we turn to the special case of affine Lie algebras.


Modular Form Weyl Group Theta Function High Weight Module String Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes and comments

  1. Macdonald, I. G. [1972] Affine root systems and Dedekind’s ri-function, Inventiones Math. 15 (1972), 91–143.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Kac, V. G. [1974] Infinite-dimensional Lie algebras and Dedekind’s n-function, Funkt. analys i ego prilozh. 8 (1974), No. 1, 77–78.CrossRefGoogle Scholar
  3. Kac, V. G. [1974] Infinite-dimensional Lie algebras and Dedekind’s n-function, English translation: Funct. Anal. Appl. 8 (1974), 68–70.zbMATHGoogle Scholar
  4. Moody, R. V. [1975] Macdonald identities and Euclidean Lie Algebras, Proc. Amer. Math. Soc, 48 (1975), 43–52.MathSciNetzbMATHGoogle Scholar
  5. Dyson, F. [1972] Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635–652.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Kac, V. G. [1978 A] Infinite-dimensional algebras, Dedekind’s rI-finction, classical Möbious function and the very strange formula, Advances in Math. 30 (1978), 85–136.zbMATHCrossRefGoogle Scholar
  7. Lepowsky, J. [1979] Generalized Verma modules, loop space cohomology and Macdonald-type identities, Ann. Sci. École Norm. Sup. 12 (1979), 169–234.MathSciNetGoogle Scholar
  8. Feingold, A. J., Lepowsky, J. [1978] The Weyl-Kac character formula and power series identities, Adv. Math. 29 (1978), 271–309.MathSciNetzbMATHGoogle Scholar
  9. Frenkel, I. B., Kac, V. G. [1980] Basic representations of affine Lie algebras and dual resonance models, Invent. Math., 62 (1980), 23–66.MathSciNetzbMATHGoogle Scholar
  10. Kac, V. G. [1980 B] An elucidation of “Infinite dimensional algebras… and the very strange formula”. E81 and the cube root of the modular invariant j, Advances in Math. 35 (1980), 264–273.zbMATHCrossRefGoogle Scholar
  11. Conway, J. H., Norton, S. P. [1979] Monstrous moonshine, Bull. London Math. Soc., 11 (1979), 308–339.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Kac, V. G., Peterson, D. H. [1983 A] Infinite dimensional Lie algebras, theta functions and modular forms, Advances in Math., 50 (1983).Google Scholar
  13. Kostant, B. [1976] On Macdonald’s 77-function formula, the Laplacian and generalized exponents, Advances in Math. 20 (1976), 179–212.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Goodman, R., Wallach, N. [1983] Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle, preprint.Google Scholar
  15. Garland, H. [1980] The arithmetic theory of loop groups, Publ. Math. IHES 52 (1980), 5–136.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Victor G. Kac
    • 1
  1. 1.Mathematics DepartmentMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations