Interactions between the DC Potential of the Brain and Slow Potential Shifts under Mental Load

  • Matthias Tennigkeit
  • Hans-Jörg Lehmann
  • Renate Haschke
Part of the Brain Dynamics book series (BD)


This chapter addresses the relationship between task-related slow potential shifts (SPS) and the DC potential of the brain. The DC potential of the brain, first described by Caton (1875), denotes a steady potential difference between the surface of the cerebral cortex or of the scalp and an extracerebral reference point. It is superimposed with faster fluctuations. Its magnitude was found to be in the range of millivolts.


Task Difficulty Late Positive Complex Increase Task Difficulty General Activation Level Positive Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson JW (1958): Motives in Fantasy, Action, and Society, Princeton: Van NostrandGoogle Scholar
  2. Bauer H, Korunka C, Leodolter M (1989): Technical requirements for high quality scalp DC-recordings. Electroencephalogr Clin Neurophysiol 72: 545–547CrossRefGoogle Scholar
  3. Bauer H, Nimberger G (1981): Concept identification as a function of preceding negative or positive spontaneous shifts in slow brain potentials. Psychophysiology 18: 466–469CrossRefGoogle Scholar
  4. Birbaumer N, Elbert T, Canavan AGM, Rockstroh B (1990): Slow potentials of the cerebral cortex and behavior. Physiol Rev 70: 1–41Google Scholar
  5. Caspers H (1963): Relations of steady potential shifts in the cortex to the wakefulness sleep spectrum. In: Brain Function, Brazier MAB, ed. Berkeley and Los Angeles: University of California PressGoogle Scholar
  6. Caspers H, Speckmann E-J, Lehmenkühler A (1987): DC potentials of the cerebral cortex: Seizure activity and changes in gas pressures. Rev Physiol Biochem Pharmacol 106: 127–178CrossRefGoogle Scholar
  7. Caton R (1875): The electrical currents of the brain. BMJ (London) 2: 278Google Scholar
  8. Düker H, Lienert GA (1959): Der Konzentrationsleistungstest (KLT): HandanWeisung. Göttingen: HogrefeGoogle Scholar
  9. Glenn LL, Hada J, Roy JP, Deschenes M, Steriade M (1982): Anterograde tracer and field potential analysis of the neocortical layer I projection from nucleus ventrales medialis of the thalamus in cat. Neuroscience 7: 1861–1877CrossRefGoogle Scholar
  10. Haschke R, Baldeweg T, Leichsenring A, Schmidt C (1991): Dynamische Aktivitätsregulation während der Ausführung zielgerichteter Handlungen in Abhängigkeit vom habituellen Leistungsmotiv. In: Konzentration und Leistung, Janssen JP, Hahn E, Strang H, eds. Göttingen: HogrefeGoogle Scholar
  11. Heckhausen H (1989): Motivation und Handeln. Berlin: SpringerGoogle Scholar
  12. Hobson JA, Steriade M (1986): Neuronal basis of behavioral state control. In: Handbook of Physiology: Section 1. Intrinsic Regulatory Systems of the Brain, Mountcastle V, ed. American Physiology SocietyGoogle Scholar
  13. Korunka C, Gruber G, Leodolter M, Bauer H (1988): Technical requirements for long-time DC recordings. In: Proceedings of the Fourth Conference of the International Organization of Psychophysiology, Radil T, Bohdaneck Z, eds. Prague: Czechoslovak Academy of SciencesGoogle Scholar
  14. Lehmann H-J, Haschke R (1989): Änderungen des allgemeinen Aktivitätszustandes in psychophysiologischen Untersuchungen—Eine Analyse objektiver und subjektiver Parameter. Z Psychol 97: 187–197Google Scholar
  15. Roitbak AI (1983): Neuroglia: Eigenschaften-Funktionen-Bedeutung. Jena: Gustav FischerGoogle Scholar
  16. Schwind J (1988): Erfassung und Analyse zerebraler Gleichspannungsschwankungen—Ein Zugang zur Beschreibung zentraler Aktivierungsphänomene in zielgerichteter Handlungen. Unpublished doctoral dissertation, Technische Hochschule, Ilmenau, GermanyGoogle Scholar
  17. Speckmann E-J, Caspers H, Janzen RWC (1978): Laminar distribution of cortical field potentials in relation to neuronal activities during seizure discharges. In: Architectonics of the Cerebral Cortex, Brazier MAB, Petsche H, eds. New York: Raven PressGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Matthias Tennigkeit
  • Hans-Jörg Lehmann
  • Renate Haschke

There are no affiliations available

Personalised recommendations