DC Potentials of the Brain

  • Heinz Caspers
Part of the Brain Dynamics book series (BD)

Abstract

This volume is devoted to the origin and significance of slow brain potentials beyond the frequency range of the conventional EEG. The occurrence of such ultraslow fluctuations up to sustained shifts of the baseline was well known in the early days of electroencephalography, when coil and string galvanometers served as recording instruments (cf. Brazier, 1963; O’Leary and Goldring, 1964; Gumnit, 1974a). It soon became evident, however, that leads of the slow components of bioelectrical activity were often distorted by artifacts caused, for example, by movements of head and eyes or by changes of electrode potentials. Therefore, the introduction of voltage amplifiers and high-pass filters that eliminate slow potential fluctuations and thus stabilize the baseline was generally appreciated. As a result, study of slow potentials was generally neglected for a rather long time, and it was only during the last few decades that considerable improvements in recording techniques stimulated a renewed interest in this field of research. Meanwhile, numerous investigations both on animals and in man have already shown that recordings of slow potentials provide, for instance, an objective access to the understanding of higher brain functions including such complex phenomena as cognitive processes. Studies presented in this volume can be expected to contribute further insights into such mechanisms.

Keywords

Slow Potential Deep Cortical Layer Bioelectrical Phenomenon Neuronal Activity Change Slow Brain Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer H (1984): Regulation of slow brain potentials affects task performance. In: Self-Regulation of the Brain and Behavior, Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N, eds. New York: SpringerGoogle Scholar
  2. Brazier MAB (1963): The discoverers of the steady potentials of the brain: Caton and Beck. UCLA Forum Sci 1: 1–14Google Scholar
  3. Bures J, Buresova 0 (1957): Die anoxische Terminaldepolarisation als Indicator der Vulnerabilität der Großhirninde bei Anoxie und Ischämie. Pflügers Arch 264: 325–334Google Scholar
  4. Caspers H (1959): Über die Beziehungen zwischen Dendritenpotential und Gleichspannung an der Hirnrinde. Pflügers Arch 269: 157–181CrossRefGoogle Scholar
  5. Caspers H (1961a): Changes of cortical DC potentials in the sleep-waking cycle. In: The Nature of Sleep, Wolstenholme GEW, O’Connor M, eds. London: ChurchillGoogle Scholar
  6. Caspers H (1961b): Die Entstehungsmechanismen des EEG. In: Klinische Elektroencephalographie, Janzen R, ed. Berlin: SpringerGoogle Scholar
  7. Caspers H (1963): Relations of steady potential shifts in the cortex to the wakefulness-sleep spectrum. In: Brain Function, Brazier MAB, ed. Berkeley and Los Angeles: University of California PressGoogle Scholar
  8. Caspers H (1965): Shifts of the cortical steady potential during various stages of sleep. In: Aspects anatomo-fonctionnels de la physiologie du sommeil, Jouvet M, ed. Paris: Centre National de la Recherche ScientifiqueGoogle Scholar
  9. Caspers H (1974): Preface. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 10, Part A, Remond A, ed. Amsterdam: ElsevierGoogle Scholar
  10. Caspers H, Schulze H (1959): Die Veränderungen der corticalen Gleichspannung während der natürlichen Schlaf-Wach-Perioden beim freibeweglichen Tier. Pflügers Arch 270: 103–120CrossRefGoogle Scholar
  11. Caspers H, Speckmann E-J (1969): DC potential shifts in paroxysmal states. In: Basic Mechanisms of the Epilepsies, Jasper HH, Ward AA, Pope A, eds. Boston: Little BrownGoogle Scholar
  12. Caspers H, Speckmann E-J (1974): Cortical DC shifts associated with changes of gas tensions in blood and tissue. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 10, Part A, Remond A, ed. Amsterdam: ElsevierGoogle Scholar
  13. Caspers H, Speckmann E-J, Bingmann D, Lehmenkühler A (1986): Wirkungen von CO2 auf das Membranpotential einzelner Neurone. In: Aktuelle Probleme der Atmungs-und Kreislaufregulation, Grote J, Thews G, eds. Stuttgart, Germany: SteinerGoogle Scholar
  14. Caspers H, Speckmann E-J, Lehmenkühler A (1979): Effects of CO2 on cortical field potentials in relation to neuronal activity. In: Origin of Cerebral Field Potentials, Speckmann E-J, Caspers H, eds. Stuttgart, Germany: ThiemeGoogle Scholar
  15. Caspers H, Speckmann E-J, Lehmenkühler A (1984): Electrogenesis of slow potentials of the brain. In: Self-Regulation of the Brain and Behavior, Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N, eds. Heidelberg, Germany: SpringerGoogle Scholar
  16. Caspers H, Speckmann E-J, Lehmenkühler A (1987): DC potentials of the cerebral cortex. Seizure activity and changes in gas pressures. Rev Physiol Biochem Pharmacol 106: 127–178CrossRefGoogle Scholar
  17. Deecke L, Bashore T, Brunia CHM, Grünewald-Zuberbier E, Grünewald G, Kristeva R (1984): Movement-associated potentials and motor control. In: Brain and Information, Karrer R, Cohen J, Tueting P, eds. New York: New York Academy of SciencesGoogle Scholar
  18. Gumnit R (1974a): Introduction and recording techniques. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 10, Part A, Remond A, ed. Amsterdam: ElsevierGoogle Scholar
  19. Gumnit R (1974b): DC shifts accompanying seizure activity. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 10, Part A, Remond A, ed. Amsterdam: ElsevierGoogle Scholar
  20. Haider M, Groll-Knapp E, Ganglberger JA (1981): Event-related slow (DC) po- tentials in the human brain. Rev Physiol Biochem Pharmacol 88: 126–197Google Scholar
  21. Heinemann U, Lux HD, Gutnick J (1977): Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp Brain Res 27: 237–243CrossRefGoogle Scholar
  22. Heinemann U, Lux HD, Marciani MG, Hofmeier G (1979): Slow potentials in relation to changes in extracellular potassium activity in the cortex of cats. In: Origin of Cerebral Field Potentials, Speckmann E-J, Caspers H, eds. Stuttgart, Germany: ThiemeGoogle Scholar
  23. Kawamura H, Sawyer CH (1964): DC potential changes in rabbit brain during slow-wave and paradoxical sleep. Am J Physiol 207: 1379–1386Google Scholar
  24. Kornhuber H, Deecke L (1965): Hirnpotentialänderung bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und re-afferente Potentiale. Pflügers Arch 284: 1–17CrossRefGoogle Scholar
  25. McCallum WC (1988): Potentials related to expectancy, preparation and motor activity. In: Human Event-Related Potentials—Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 3, Picton TW, ed. Amsterdam: ElsevierGoogle Scholar
  26. O’Leary JL, Goldring S (1964): DC potentials of the brain. Physiol Rev 44: 91–125Google Scholar
  27. Rockstroh B, Elbert T, Canavan A, Lutzenberger W, Birbaumer M (1989): Slow Cortical Potentials and Behaviour, 2d ed. Munich, Germany: Urban and SchwarzenbergGoogle Scholar
  28. Roitbak AI (1988): Neuroglia: Properties, functions and significance in nervous activity. Soy Sci Rev F Physiol Gen Biol 2: 355–402Google Scholar
  29. Rösler FV (1982): Hirnelektrische Korrelate kognitiver Prozesse. Berlin: SpringerCrossRefGoogle Scholar
  30. Rowland V (1961): Electrographic responses in sleeping conditioned animals. In: The Nature of Sleep, Wolstenholme EW, O’Connor M, eds. London: ChurchillGoogle Scholar
  31. Rowland V (1967): Steady potential phenomena of cortex. In: The Neurosciences: A Study Program, Quarton GC et al., eds. New York: Rockefeller University PressGoogle Scholar
  32. Somjen GG (1973): Electrogenesis of sustained potentials. Proc Neurobiol 1: 199–237CrossRefGoogle Scholar
  33. Somjen GG (1975): Electrophysiology of neuroglia. Annu Rev Physiol 37: 163190Google Scholar
  34. Somjen GG (1980): Stimulus-evoked and seizure-related responses of extracellular calcium activity in spinal cord compared to those in the cerebral cortex. J Neurophysiol 44: 617–632Google Scholar
  35. Speckmann E-J, Caspers H (1973): Neurophysiologische Grundlagen der Provokationsmethoden in der Elektroencephalographie. Z EEG-EMG 4: 157–167Google Scholar
  36. Speckmann E-J, Caspers H, Janzen RWC (1972): Relations between cortical DC shifts and membrane potential changes of cortical neurons associated with seizure activity. In: Synchronization of EEG Activity in Epilepsies, Petsche H, Brazier MAB, eds. New York: SpringerGoogle Scholar
  37. Speckmann E-J, Caspers H, Janzen RWC (1978): Laminar distribution of cortical field potentials in relation to neuronal activities during seizure discharges. In: Architectonics of the Cerebral Cortex, Brazier MAB, Petsche H, eds. New York: Raven PressGoogle Scholar
  38. Speckmann E-J, Caspers H, Sokolov W (1970): Aktivitätsänderungen spinaler Neurone während und nach einer Asphyxie. Pflügers Arch 319: 122–138CrossRefGoogle Scholar
  39. Staschen C-M, Lehmenkühler A, Zidek W, Caspers H (1987): Beziehungen zwischen kortikalen DC-Potentialen und der K+-Konzentration im Blut und Extrazellulärraum der der Hirnrinde bei reversibler Asphyxie. Z EEG-EMG 18: 53–57Google Scholar
  40. Tschirgi RD, Taylor JL (1958): Slowly changing biolectric potentials associated with the blood-brain barrier. Am J Physiol 195: 7–22Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Heinz Caspers

There are no affiliations available

Personalised recommendations