Cornea-Negative and Cornea-Positive Slow Components of the ERG and Light-induced Extracellular Potassium Changes

  • Renate Hanitzsch
Part of the Brain Dynamics book series (BD)


The electroretinogram (ERG) is the summed potential of the retina to light stimulation. The ERG shows a cornea-negative a-wave, a cornea-positive b-wave, the slow cornea-positive c-wave, and a small off-effect (see Figure 17-1). This particular ERG was recorded in a human subject during general anesthesia (Hanitzsch et al., 1966). The cellular events to which each of the ERG waves relate have been the subject of research (Tomita, 1972) but remain only partially understood (Coles, 1985; Karwoski and Proenza, 1987).


Stimulus Duration Slow Component Rabbit Retina Muller Cell Extracellular Potassium Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barlow HB, Levick WR (1965): The mechanism of directionally selective units in rabbit’s retina. J Physiol 178: 477–504Google Scholar
  2. Bomschein H, Hanitzsch R, v Lützow A (1966): Off-Effekt und negative Komponente des enukleierten Bulbus und der isolierten Netzhaut des Kaninchens: 1. Einfluß der Reizparameter. Vision Res 6: 251–259CrossRefGoogle Scholar
  3. Coles JA (1985): Homeostasis of extracellular fluid in retinas of invertebrates and vertebrates. In: Progress in Sensory Physiology, Vol. 6, Autrum H, Ottoson D, eds. New York: Springer-VerlagGoogle Scholar
  4. Deitmer JW, Schlue WR (1989): An inwardly directed electrogenic sodium bicarbonate cotransport in leech glial cells. J Physiol 411: 179–194Google Scholar
  5. Deitmer JW, Szatkowski M (1990): Membrane potential dependence of intracellular pH regulation by identified glial cells in the leech central nervous system. J Physiol 421: 617–631Google Scholar
  6. Dick E, Miller RF, Bloomfield St (1985): Extracellular K+ activity changes related to electroretinogram components: 2. Rabbit (E-type) retinas. J Gen Physiol 85: 911–931CrossRefGoogle Scholar
  7. Frishman LJ, Steinberg RH (1989): Light-evoked increases in [K+]o in proximal portion of the dark-adapted cat retina. J Neurophysiol 61: 1233–1243Google Scholar
  8. Fujimoto M, Tornita T (1979): Reconstruction of the slow Pm from the rod potential. Invest Ophthalmol Vis Sci 18: 1090–1093Google Scholar
  9. Fujimoto M, Tornita T (1981): Field potentials induced by injection of potassium into the frog retina: A test of current interpretations of the electroretinographic (ERG) b-wave. Brain Res 204: 51–64CrossRefGoogle Scholar
  10. Hanitzsch R (1973): Intraretinal isolation of Pm subcomponents in the isolated rabbit retina after treatment with sodium aspartate. Vision Res 13: 2093–2102CrossRefGoogle Scholar
  11. Hanitzsch R (1988): The time course of the light-induced extracellular potassium change around receptors and at the vitreal surface compared with the time course of slow Pm wave in the isolated rabbit retina. Physiol Bohemoslov 37: 227–233Google Scholar
  12. Hanitzsch R (1990): A comparison between the slow cornea-negative component of the electroretinogram (ERG) and extracellular K+ changes in the isolated rabbit retina. J Physiol 425: 50 PGoogle Scholar
  13. Hanitzsch R, Bornschein H, v Lützow A (1966): Off-Effekt and negative Komponente des enukleierten Bulbus and der isolierten Netzhaut des Kaninchens: 2. Einfluß der Temperatur. Vision Res 6: 261–269CrossRefGoogle Scholar
  14. Hanitzsch R, Hommer K, Bornschein H (1966): Der Nachweis langsamer Potentiale im menschlichen ERG. Vision Res 6: 245–250CrossRefGoogle Scholar
  15. Hanitzsch R, Tornita T, Wagner H (1984): A chamber preserving cellular function of the isolated rabbit retina suited for extracellular and intracellular recordings. Ophthalmic Res 16: 27–30CrossRefGoogle Scholar
  16. Hodgkin AL, McNaughten PA, Nunn BJ (1985): The ionic selectivity and calcium dependence of the light-sensitive pathway in toad rods. J Physiol 358: 447–468Google Scholar
  17. Karwoski Chi, Proenza LM (1987): Sources and sinks of light-evoked 6.[K+]o in the vertebrate retina. Can J Physiol Pharmacol 65: 1009–1017CrossRefGoogle Scholar
  18. Kuffler SW, Nicholls JG, Orkand RK (1966): Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29: 768–787Google Scholar
  19. Mättig W-U, Hanitzsch R (1990): [K+]o changes at the vitreal surface compared with [K+]o changes around receptors in the isolated rabbit retina. Doc Ophthalmol 75: 181–187Google Scholar
  20. Mättig W-U, Hanitzsch R (1991): Measurements of the extracellular potassium concentrations in the isolated rabbit retina with different kinds of potassium-sensitive microelectrodes. J Neurosci Methods 40: 127–132CrossRefGoogle Scholar
  21. Newman EA (1985): Membrane physiology of retinal glial (Müller) cells. J Neurosci 5: 2225–2239Google Scholar
  22. Newman EA (1987): Distribution of potassium conductance in mammalian Müller (glial) cells. J Neurosci 7: 2423–2432Google Scholar
  23. Oakley B II, Green DG (1976): Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J Neurophysiol 39: 1117–1133Google Scholar
  24. Steinberg RH, Linsenmeier RA, Griff ER (1985): Retinal pigment epithelial cell contributions to the electroretinogram and electrooculogram. Progress in Retinal Research, Vol. 6, Osborne NN, Chader GJ, eds. New York: Pergamon PressGoogle Scholar
  25. Steinberg RH, Oakley B, Niemeyer G (1980): Light-evoked changes in [Klo in retina of intact cat eye. J Neurophysiol 44: 897–921Google Scholar
  26. Tornita T (1972): The electroretinogram, as analyzed by microelectrode studies. In: Handbook of Sensory Physiology, Vol. 7, Part 2, Fuortes MGF, ed. New York: Springer-VerlagGoogle Scholar
  27. Tornita T (1976): Electrophysiological studies of retinal cell function. Invest Ophthalmol 15: 169–187Google Scholar
  28. Trifonov JA (1968): Study of synaptic transmission between the photoreceptor and the horizontal cell using electrical stimulation of the retina. Biophysics 13: 948–957Google Scholar
  29. Wündsch LJ (1971): Langsame Potentiale im Säuger-Elektroretinogram. Unpublished doctoral dissertation, University of ViennaGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Renate Hanitzsch

There are no affiliations available

Personalised recommendations