Skip to main content

Cortical Slow Potentials, Depolarization of Glial Cells, and Extracellular Potassium Concentration

  • Chapter
Slow Potential Changes in the Brain

Part of the book series: Brain Dynamics ((BD))

Abstract

It is known that in response to a stimulus applied to the surface of the cortex after dendritic potential-20 to 30 msec negative potential reflecting EPSPs of apical dendrites—slow negativity (SN) arises (Chang, 1951). SN has been investigated in detail (Goldring and O’Leary, 1960; Roitbak, 1963, 1965; Roitbak et al., 1974). SN arises at a greater intensity of stimulation than dendritic potential; its amplitude increases with increases in the intensity of the stimulus; it can be recorded at a distance of 3 mm; and latency of SN is about 15 msec. SN increases during 50–80 msec, reaches 2 mV or more, and lasts 300–3000 msec. At the stimulation frequency 5–100 Hz SN summates and a negative shift of potential (NSP) occurs. SN is recorded in a volume of the cortex having the shape of a spherical segment. If double stimuli are used with deep anesthesia, the response to the second stimulus remains attenuated for up to 1 min. Based on the evidence obtained in a number of laboratories (Ransom et al., 1977; Roitbak et al., 1984, 1987; Somjen and Trachtenberg, 1979) it has been established beyond any doubt that K+ and glial cells contribute to the genesis of prolonged negative potentials at the cortical surface. However, some interesting points still remain to be clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauer H (1989): Contribution of the neuroglia to the scalp DC potential. In: Functions of Neuroglia, Roitbak AI, ed. Tbilisi, Georgia: MetsnierebaChang H-T (1951): Dendritic potential of cortical neurons produced by direct electrical stimulation of the cerebral cortex. J Neurophysiol 14: 1–21

    Google Scholar 

  • Dietzel I, Lux H-D, Heinemann U (1987): Electrolyte and cellular volume changes during enhanced neuronal activity in cat brain. In: Functions of Neuroglia

    Google Scholar 

  • Roitbak AI, ed. Tbilisi, Georgia: Metsniereba

    Google Scholar 

  • Gardner-Medwin AR (1983): Analysis of potassium dynamics in mammalian brain tissue. J Physiol 335: 393–426

    Google Scholar 

  • Gardner-Medwin AR (1987): Assessment of the glial “spatial buffer” mechanism in rat brain, frog brain and retina. In: Functions of Neuroglia, Roitbak AI, ed. Tbilisi, Georgia: Metsniereba

    Google Scholar 

  • Gedevanishvili GI (1987): The action of cholinergic drugs on the slow negative potential. In: Functions of Neuroglia, Roitbak AI, ed. Tbilisi, Georgia: Metsniereba

    Google Scholar 

  • Goldring S, O’Leary JL (1960): Pharmacological dissolution of evoked cortical potentials. Fed Proc 19: 612–618

    Google Scholar 

  • Grossman RG, Hampton T (1968): Depolarization of cortical glial cells during electrocortical activity. Brain Res I1: 316–324

    Article  Google Scholar 

  • Haschke W (1989): Slow cortical potential shifts—Couldn’t they reflect glial processes? In: Functions of Neuroglia, Roitbak AI, ed. Tbilisi, Georgia: Metsniereba

    Google Scholar 

  • CH. 14 GLIAL CELL DEPOLARIZATION AND EXTRACELLULAR POTASSIUM 177

    Google Scholar 

  • Heinemann U, Lux HD, Mariani MG, Hofmeier G (1979): Slow potentials in relation to changes in extracellular potassium activity in the cortex of cats. In: Origin of Cerebral Field Potentials, Speckmann EJ, Caspers H, eds. Stuttgart: Georg Theme

    Google Scholar 

  • Kikabidze KG, Ocherashvili IV (1986): Slow negative potentials in the cortex of the cat at transcallosal stimulation. Bull Acad Sci Georgian SSR 124: 593–596

    Google Scholar 

  • Kuffler SW, Nicholls C (1966): The physiology of neuroglial cells. Ergebn Physiol 57: 1–90

    Article  Google Scholar 

  • Li CL, Chou SN (1962): Cortical intracellular synaptic potentials and direct cortical stimulation. J Cell Comp Physiol 60: 1–16

    Article  Google Scholar 

  • Ocherashvili IV, Kikabidze KG, Roitbak Al, Pavlik V (1989): The slow negative potential and [Klo changes in the cerebral cortex. In: Functions of Neuroglia, Roitbak AI, ed. Tbilisi, Georgia: Metsniereba

    Google Scholar 

  • Ocherashvili 1V, Roitbak AI, Bobrov AV, Kapel RG (1983): Changes in the concentration of extracellular potassium and the slow negative potential in the somatosensory region of the cortex on stimulation of the ventroposterolateral cat thalamic nucleus. Neirofiziologiya (Kiev) 15: 192–194

    Google Scholar 

  • Orkand RK, Coles JA, Tsacopoulos M (1987): The role of glial cells in ion homeostasis in the retina of the honeybee drone, Apis mellifera. In: Functions of Neuroglia, Roitbak AI, ed. Tbilisi, Georgia: Metsniereba

    Google Scholar 

  • Pirch JH, Corbus MJ, Rigdon GC (1983): Single-unit and slow potential responses from rat frontal cortex during associative conditioning. Exp Neurol 82:118130

    Google Scholar 

  • Radil T, Pocock P, Cooper R, Radilova J (1987): On possible glial origin of cortical DC potential shifts in human. In: Functions of Neuroglia, Roitbak AI, ed. Tbilisi, Georgia: Metsniereba

    Google Scholar 

  • Ransom B, Greenwood RS, Goldring S, Letcher FS (1977): The effect of barbiturate and procaine on glial and neuronal contributions to evoked cortical steady potential shifts. Brain Res 134: 479–499

    Article  Google Scholar 

  • Rebert CS (1980): Neurobehavioral aspects of brain slow potentials. Prog Brain Res 54: 381–402

    Article  Google Scholar 

  • Roitbak AI (1963): On the nature of cortical inhibition. Zh vyssh new Deyat 13: 859–869

    Google Scholar 

  • Roitbak AI (1965): Slow negative potentials of the cortex and neuroglia. In: The Modern Problems of the Physiology and Pathology of the Nervous System, Parin VV, ed. Moscow: Meditsina

    Google Scholar 

  • Roitbak AI (1984): On the nature of the processes induced by unconditioned stimulation in the cerebral cortex. Acta Neurobiol Exp Warsz 44: 41–49

    Google Scholar 

  • Roitbak AI (1987): Cortical negative DC potentials, depolarization of glial cells and changes in extracellular potassium concentration. In: Functions of Neuroglia, Roitbak AI, ed. Tbilisi, Georgia: Metsniereba

    Google Scholar 

  • Roitbak AI, Bobrov AV, Kashakashvili RP, Linenko VI, Mikeladze AL (1974): On the nature of the slow negative potential of the direct cortical response.In: Basic Problems of the Electrophysiology of the Brain, Livanov MN, ed. Moscow: Nauka

    Google Scholar 

  • Roitbak AI, Fanardjian VV (1981): Depolarization of cortical glial cells in response to electrical stimulation of the cortical surface. Neuroscience 6: 2529 2537

    Google Scholar 

  • Roitbak AI, Fanardjian VV, Melkonyan DS, Melkonyan AA (1987): Contribution of glia and neurons to the surface-negative potentials of the cerebral cortex during its electrical stimulation. Neuroscience 20: 1057–1067

    Article  Google Scholar 

  • Roitbak AI, Machek J, Pavlik V, Bobrov AV, Ocherashvili IV (1980): Changes in extracellular potassium concentration and the slow negativity in the cerebral cortex. Neirofiziologiya (Kiev) 12: 459–463

    Google Scholar 

  • Roitbak AI, Machek J, Pavlik V, Bobrov AV, Ocherashvili IV, Kapel RG (1984): Changes in extracellular potassium concentration and slow negative potentials in cat cortex produced by its electrical stimulation. In: Investigation of the Mechanisms of Nervous Activity, Kostyuk PG, ed. Moscow: Nauka

    Google Scholar 

  • Roitbak AI, Ocherashvili IV (1983): Extracellular potassium concentration changes and phenomenon of dendritic potential depression against a background of slow negativity in the cat cerebral cortex. Neirofiziologiya (Kiev) 15: 198–200

    Google Scholar 

  • Roitbak AI, Ocherashvili IV, Gedevanishvili G (1985): On the process of inhibition in the superficial neuropil of the cerebral cortex. Physiol bohemoslov (Suppl) 34: 133–136

    Google Scholar 

  • Rusinov VS (1969): Dominanta. Moscow: Meditsina

    Google Scholar 

  • Skinner JE, Molnar M (1983): Event-related extracellular potassium ion activity changes in frontal cortex of the conscious cat. J Neurophysiol 49: 204–215

    Google Scholar 

  • Somjen GG, Trachtenberg M (1979): Neuroglia as generator of extracellular currents. In: Origin of Cerebral Field Potentials, Speckuran EJ, Caspers H, eds. Stuttgart: Georg Thieme

    Google Scholar 

  • Takahashi T, Tsuruhara H (1987): Slow depolarizing potentials recorded from glial cells in the rat superficial dorsal horn. J Physiol 388: 597–610

    Google Scholar 

  • Walter WG (1973): Introduction. Electroencephalogr Clin Neurophysiol (Suppl) 33:IX—XI

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roitbak, A.I. (1993). Cortical Slow Potentials, Depolarization of Glial Cells, and Extracellular Potassium Concentration. In: Haschke, W., Speckmann, E.J., Roitbak, A.I. (eds) Slow Potential Changes in the Brain. Brain Dynamics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-1379-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1379-4_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4757-1381-7

  • Online ISBN: 978-1-4757-1379-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics