Hall Effect in Liquid Metals: Experimental Results

  • H. U. Künzi
  • H.-J. Güntherodt


The development of quantum mechanics at the beginning of this century gave rise to a well-established and fundamental understanding of crystalline solids. One of the basic facts that simplified the theoretical problem was the fundamental property of the crystal lattice, namely its periodicity. This allowed one of calculate approximate yet realistic solutions of the Schrödinger equation. The theory of non-periodic structures is much more difficult and detailed calculations have not yet been performed on a large scale. Since it was not clear to what extent the periodicity itself was directly responsible for the physical properties of crystals, direct experimental studies of non-periodic structures became of the utmost importance. An intense interest in such studies on metallic materials started about 20 years ago. For several reasons liquid metals proved to be excellent materials for such investigations. Above the normal melting temperature liquid metals are in stable thermodynamic equilibrium. They have well-defined atomic structures and can be studied in the form of alloys as well as pure liquid elements. As most liquid metals are completely miscible their alloys can be studied over the entire concentration range. Because of phase diagram restrictions this is not possible for most crystalline alloy systems. Furthermore samples of any desired quantity can easily be prepared.


Electrical Resistivity Liquid Metal Conduction Electron Free Electron Liquid State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Des Coudres, Phys. Z. 2: 586 (1901).Google Scholar
  2. 2.
    H. Rausch v. Traubenberg, Ann. Phys. 17: 109 (1905).Google Scholar
  3. 3.
    W. M. Nielsen, Phys. Rev. 23: 302 (1924).Google Scholar
  4. 4.
    W. N. Fenninger, Phil. Mag. 27: 109 (1914).Google Scholar
  5. 5.
    W. Gerlach, in: “Handbuch der Physik XIII,” Geiger und Scheel, ed., Berlin (1928), p. 259.Google Scholar
  6. 6.
    J. A. Eldridge, Phys. Rev. 21: 131 (1923).ADSCrossRefGoogle Scholar
  7. 7.
    A. Sommerfield, Z. f. Physik 47: 1 (1928).ADSCrossRefGoogle Scholar
  8. 8.
    R. Peierls, Z. f. Physik 53: 255 (1929).ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    F. Bloch, Z. f. Physik 52: 555 (1928).ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    N. F. Mott and E. H. Jones, “The Theory of the Properties of Metals and Alloys,” (1936).Google Scholar
  11. 11.
    H. Fröhlich, “Elektronentheorie der Metalle,” (1936).Google Scholar
  12. 12.
    H. Zahn, Die Naturwissenschaften 40: 848 (1930).ADSCrossRefGoogle Scholar
  13. 13.
    J. Kokoin and I. Fakodow, Z. Phys. 71: 393 (1931).ADSCrossRefGoogle Scholar
  14. 14.
    P. W. Kendall and N. E. Cusack, Phil. Mag. 5: 100 (1960).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Tièche, Helv. Phys. Acta 33: 963 (1960).Google Scholar
  16. 16.
    J. M. Ziman, Phil. Mag. 6: 1013 (1961).ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    H.-J. Güntherodt and G. Busch, Phys. kondens. Materie 6: 325 (1967).ADSGoogle Scholar
  18. 18.
    H.-J. Güntherodt and H. U. Künzi, Phys. kondens. Materie 16: 117 (1973).ADSGoogle Scholar
  19. 19.
    R. Müller, Thesis, University of Basel.Google Scholar
  20. 20.
    N. F. Mott and E. A. Davies, “Electronic processes in non-crystalline materials,” Clarendon Press, Oxford (1971).Google Scholar
  21. 21.
    R. S. Allgaier, Phys. Rev. 185: 227 (1969).ADSCrossRefGoogle Scholar
  22. 22.
    L. E. Ballentine, this book.Google Scholar
  23. 23.
    I. G. Fakidov, Doklady Akad. Nauk SSSR 63: 123 (1948).Google Scholar
  24. 24.
    N. Cusack and P. Kendall, Phil. Mag. 6: 419 (1961).ADSCrossRefGoogle Scholar
  25. 25.
    E. G. Wilson, Phil. Mag. 7: 989 (1962).ADSCrossRefGoogle Scholar
  26. 26.
    G. Busch and O. Vogt, Helv. Phys. Acta 27: 24 (1954).Google Scholar
  27. 27.
    G. Busch and Y. Tièche, Phys. kondens. Materie 1:78 (1963).ADSGoogle Scholar
  28. 28.
    J. E. Enderby, Proc. Phys. Soc. 81: 772 (1963).ADSCrossRefGoogle Scholar
  29. 29.
    A. J. Greenfeld, Phys. Rev. 135: 1589 (1964).ADSCrossRefGoogle Scholar
  30. 30.
    N. E. Cusack, J. E. Enderby, P. W. Kendall and Y. Tièche, J. Sci. Instr. 42: 226 (1965).ADSCrossRefGoogle Scholar
  31. 31.
    R. G. Suchannek, Rev. Sci. Instr. 37: 589 (1966).ADSCrossRefGoogle Scholar
  32. 32.
    R. G. Suchannek, L. Minghetti and S. Naiditch, Rev. Sci. Instr. 37:782 (1966).Google Scholar
  33. 33.
    V. A. Alekseev, A. A. Andreev and Yu. F. Ryzhkov, Zavodskaya Laboratoriya 35:691 (1969); Indus. Lab. 35: 829 (1969).Google Scholar
  34. 34.
    H. L. McKinzie and D. S. Tannhauser, J. Appl. Phys. 40: 4954 (1969).ADSCrossRefGoogle Scholar
  35. 35.
    J. C. Perron, Rev. de Physique Appl. 5: 611 (1979).CrossRefGoogle Scholar
  36. 36.
    P. W. Shackle, Phil. Mag. 21: 987 (1970).ADSCrossRefGoogle Scholar
  37. 37.
    J. P. Velly, A. M. Martin and E. J. Picard, Phys. kondens. Materie 15: 36 (1972).ADSGoogle Scholar
  38. 38.
    H. U. Tschirner, R. F. Wolf and M. Wobst, Wiss. Z. d. Techn. Hochsch. Karl-Marx-Stadt 17: 335 (1975).Google Scholar
  39. 39.
    R. D. Swenumson, U. Even and J. C. Thompson, Rev. Sci. Instr. 49:519 (1978).ADSCrossRefGoogle Scholar
  40. 40.
    L. Langeheine and H. Mayer, Z. Physik 249: 386 (1972).ADSCrossRefGoogle Scholar
  41. 41.
    B. R. Rüssel and C. Wahlig, Rev. Sci. Instr. 21: 1028 (1950).ADSCrossRefGoogle Scholar
  42. 42.
    S. Takeuchi and K. Murakami, Sci. Rep. RITU A25:73 (1974).Google Scholar
  43. 43.
    H. R. Hidber and A. Nassenstein, in preparation.Google Scholar
  44. 44.
    H.-J. Güntherodt, H. U. Künzi and R. Müller, Phys. Lett. 54A, 155 (1975).ADSGoogle Scholar
  45. 45.
    U. Even and W. Freyland, J. Phys. F: Metal Phys. 5:L104 (1975).ADSCrossRefGoogle Scholar
  46. 46.
    J. M. Ziman, Advan. Phys. 10: 1 (1961).ADSCrossRefGoogle Scholar
  47. 47.
    I. Sauermann and G. Metzger, Z. Phys. Chem. 216: 37 (1961).Google Scholar
  48. 48.
    N. E. Cusack and P. W. Kendall, Phil. Mag. 8:157 (1963).ADSCrossRefGoogle Scholar
  49. N. E. Cusack and P. W. Kendall, Phil. Mag. 10:871 (1964).ADSCrossRefGoogle Scholar
  50. 49.
    H.-J. Güntherodt, A. Menth and Y. Tièche, Phys. kondens. Materie 5:392 (1966).ADSGoogle Scholar
  51. 50.
    A. A. Andreev and A. R. Regel, Fiz. Tverd. Tela 7:2567 (1965).Google Scholar
  52. A. A. Andreev and A. R. Regel, (Sov. Phys.-Solid State 7:2076 (1966))Google Scholar
  53. A. A. Andreev and A. R. Regel, Fiz. Tverd. Tela 8:3681 (1966).Google Scholar
  54. A. A. Andreev and A. R. Regel, (Sov. Phys.-Solid State 8:455 (1967)).Google Scholar
  55. 51.
    H. A. Davies, J. S. Llewelyn Leach and P. H. Draper, Phil. Mag. 23:1163 (1971).ADSCrossRefGoogle Scholar
  56. 52.
    I. Shiota and S. Tamaki, J. Phys. F: Metal Phys. 7: 2361 (1977).ADSCrossRefGoogle Scholar
  57. 53.
    H.-J. Güntherodt, H. U. Künzi and R. Müller, Helv. Phys. Acta 46:403 (1973).Google Scholar
  58. 54.
    P. W. Kendall, J. Nucl. Mater. 35: 41 (1970).ADSCrossRefGoogle Scholar
  59. 55.
    S. Tackeuchi and H. Endo, Trans. Jap. Inst. of Metals 2: 243 (1961).Google Scholar
  60. 56.
    Y. I. Dutchak, P. O. Stetskiv and J. P. Klyus, Sov. Phys.-Solid State 8: 455 (1966).Google Scholar
  61. 57.
    N. E. Cusack, P. W. Kendall and A. S. Marwaha, Phil. Mag. 7: 1745 (1962).ADSCrossRefGoogle Scholar
  62. 58.
    M. Benkirane and J. Robert, Compt Rend B264:1584 (1967).Google Scholar
  63. 59.
    H.-J. Güntherodt and H. A. Meier, Phys. kondens. Materie 16: 25 (1973).ADSGoogle Scholar
  64. 60.
    L. Schlapbach, Phys. condens. Matter 18: 189 (1974).ADSCrossRefGoogle Scholar
  65. 61.
    G. Busch, H.-J. Güntherodt and H. U. Künzi, Phys. Lett. A32:376 (1970).ADSGoogle Scholar
  66. 62.
    G. Busch, H.-J. Güntherodt, H. U. Künzi and L. Schlapbach, Phys. Lett. A31:191 (1970).ADSGoogle Scholar
  67. 63.
    R. Oberle, H. U. Künzi, H.-J. Güntherodt, B. G. Giessen, in preparation.Google Scholar
  68. 64.
    H.-J. Güntherodt, H. U. Künzi, M. Liard, M. Müller, R. Müller and C. C. Tsuei, in: “Amorphous Magnetism II,” R. A. Levy and R. Hasegawa, eds., Plenum Press, New York (1977), p. 257.CrossRefGoogle Scholar
  69. 65.
    H.-J. Güntherodt, H. U. Künzi, M. Liard, R. Müller, R. Oberle and H. Rudin, in: “Proc. 3rd Int. Conf. on Liquid Metals Bristol,” (1976), p. 342.Google Scholar
  70. 66.
    H.-J. Güntherodt and H. U. Künzi, in: “Metallic Glasses,” J. J. Gilman, ed., American Society for Metals, Metal Park, Ohio (1977), p. 247.Google Scholar
  71. 67.
    F. Boescholen and C. Guiszoon, Physica 23: 704 (1957).ADSCrossRefGoogle Scholar
  72. 68.
    T. G. Berlincourt, Phys. Rev. 114: 969 (1959).ADSCrossRefGoogle Scholar
  73. 69.
    J. Pascal, J. Morin and P. Lacombe, C. R. Acad. Sci. 256: 4899 (1963).Google Scholar
  74. 70.
    C. M. Hurd, “Hall Effect in Metals and Alloys,” Plenum Press, New York (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • H. U. Künzi
    • 1
  • H.-J. Güntherodt
    • 1
  1. 1.Institut für PhysikUniversität BaselBaselSwitzerland

Personalised recommendations