Hall Effect Magnetometers for High Magnetic Fields and Temperatures between 1.5°K and 300°K

  • L. G. Rubin
  • H. H. Sample


Perhaps the most obvious of all of the applications of the Hall effect has been its use in the measurement of magnetic fields. Since the late forties,1 the technology associated with the Hall effect magnetometer (HEM) has matured2 to the point where off-the-shelf inexpensive instruments are available from many manufacturers. Metrologically speaking, there are very few unsolved problems relating to HEM materials, device fabrication, circuit design, and system characterization—assuming certain performance limits are observed. Thus, we can routinely measure a dc or low frequency ac magnetic field in the range ~1 mT to ~3 T (~10 G to ~30 kG) with a precision3 of 0.5–2%, with spatial resolution of several millimeters, and in an environment maintained at or near room temperature.


Hall Effect High Magnetic Field Solid State Electron Slope Change Quantum Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    It is generally agreed that the first publication dealing with a practical HEM was that of G. L. Pearson, Rev. Sci. Instrum. 19:263 (1948).ADSCrossRefGoogle Scholar
  2. 2.
    C. Germain, In his review of methods of measuring magnetic fields [Nucl. Instrum. Methods 21:17 (1963)], lists 44 papers on the Hall effect published between 1953 and 1960.ADSCrossRefGoogle Scholar
  3. 3.
    Precision, rather than accuracy, is specified so as to bypass considerations of calibration traceability, sensor orientation errors, etc.Google Scholar
  4. 4.
    H. H. Wieder, J. Appl. Phys. 33:(S)1278 (1962).ADSCrossRefGoogle Scholar
  5. 5.
    R. L. Baty and P. B. Weiss, IEEE Trans. Instrum. Meas. IM-22:18 (1973).CrossRefGoogle Scholar
  6. 6.
    I. M. Ross and E. W. Saker, J. Electronics 1: 233 (1955).Google Scholar
  7. 7.
    N. P. Milligan and J. P. Burgess, Solid State Electron. 7:323 (1964).ADSCrossRefGoogle Scholar
  8. 8.
    R. N. Goren and M. Tinkham, J. Low Temp. Phys. 5:465 (1971).ADSCrossRefGoogle Scholar
  9. 9.
    H. T. Minden and M. F. Leonard, J. Appl. Phys. 50:2945 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    There are numerous examples of carefully designed systems where HEM performance has been extended even beyond this. Typical among these have been the Varian “Fieldial”; J. R. Mulady, IEEE Trans. Instrum. Meas. IM-13:343 (1965).Google Scholar
  11. G. W. Trott et al., J. Phys. E 12: 979 (1979).ADSCrossRefGoogle Scholar
  12. 11.
    J. P. McEvoy and R. F. Decell, Rev. Sci. Instrum. 34:914 (1963).ADSCrossRefGoogle Scholar
  13. 12.
    M. S. Lubell and B. S. Chandrasekhar, Rev. Sci. Instrum. 35:906 (1964).ADSCrossRefGoogle Scholar
  14. 13.
    D. A. Hill and C. Hwang, J. Sci. Instrum. 43:581 (1966).ADSCrossRefGoogle Scholar
  15. 14.
    K. G. Günther and H. Freller, Cryogenics 7: 49 (1976).CrossRefGoogle Scholar
  16. 15.
    J. E. Simpkins, Rev. Sci. Instrum. 39:570 (1968).ADSCrossRefGoogle Scholar
  17. 16.
    B. G. Lazarev, L. S. Lazereva, S. I. Goridov and S. G. Shul’man, Sov. Phys. Dokl. 13:696 (1969).ADSGoogle Scholar
  18. 17.
    S. G. Shul’man, Instrum. Exp. Tech. 184 (1969).Google Scholar
  19. 18.
    Y. G. Agbalyan, Y. I. Kazantsev, E. N. Lysenko, N. M. Noginova, and G. K. Yagola, Measurement Tech. 1723 (1969).Google Scholar
  20. 19.
    V. G. Veselago, M. V. Glushkov, V. M. Ivanov, and S. G. Shul’man, Instrum. Exp. Tech. 1580 (1970).Google Scholar
  21. 20.
    G. W. Donaldson, Advances in Cryogenic Engineering 18: 416 (1973).CrossRefGoogle Scholar
  22. 21.
    G. K. Yagola, Y. I. Kazantsev, and E. N. Lysenko, Measurement Tech. 1535 (1973).Google Scholar
  23. 22.
    H. Hieronymous and H. Weiss, Solid State Electron. 5:71 (1962) [in German].ADSCrossRefGoogle Scholar
  24. 23.
    S. S. Shalyt, R. V. Parfen’ev, and M. S. Bresler, Sov. Phys.-JETP 48: 1212 (1965).Google Scholar
  25. 24.
    G. N. Harding, W. H. Mitchell, and E. H. Putley, Solid State Electron. 9:464 (1966).CrossRefGoogle Scholar
  26. 25.
    I. Hlásnik, F. Chovanec, and M. Polák, Cryogenics 6: 89 (1966).CrossRefGoogle Scholar
  27. 26.
    M. Polák and I. Hlásnik, Solid State Electron. 13:219 (1970).ADSCrossRefGoogle Scholar
  28. 27.
    A. A. Kolmakov, R. V. Parfen’ev, V. I. Pogodin, and G. A. Yur’eva, Instrum. Exp. Tech. 289 (1971).Google Scholar
  29. 28.
    M. Polák, Rev. Sci. Instrum. 44:1794 (1973).ADSCrossRefGoogle Scholar
  30. 29.
    V. G. Veselago, V. M. Ivanov, V. I. Pogodin, V. I. Tikhonov, and G. A. Yur’eva, Measurement Tech. 424 (1975).Google Scholar
  31. 30.
    H. W. Weber, G. P. Westphal, and I. Adaktylos, Cryogenics 16:39 (1976).CrossRefGoogle Scholar
  32. 31.
    S. V. Odenov, G. A. Udzulashvili, V. E. Khuedelidze, D. G. Chigvinadze, and V. A. Skukhman, Cryogenics 6: 46 (1966).ADSCrossRefGoogle Scholar
  33. 32.
    W. C. Hubbell, A. D. Haubold, and C. J. Bergeron, Cryogenics 7:373 (1967).ADSGoogle Scholar
  34. 33.
    J. A. Woollam, H. A. Beale, and I. L. Spain, Rev. Sci. Instrum. 44:432 (1973).ADSCrossRefGoogle Scholar
  35. 34.
    P. Kordos, L. Jansak, and V. Benc, Cryogenics 13: 313 (1973).CrossRefGoogle Scholar
  36. 35.
    F. W. Bell, Inc., 6120 Hanging Moss Rd., Orlando, Florida 32807, U.S.A. Designation: FWB.Google Scholar
  37. 36.
    Electrotechnicky Ustav, Bratislava, Czechoslovakia (the Institute of Electrical Engineering of the Slovak Academy of Sciences in Bratislava). Designation: ETU. It is our understanding that HEM’s are no longer available from this supplier.Google Scholar
  38. 37.
    Copal Co., Ltd. Shimura 2-16-70 Itabashi-ku Tokyo, Japan 174. Designation: CPL.Google Scholar
  39. 38.
    From the data reported in the manufacturer’s specifications [Instrument Systems Corporation, “Siemens Galvanomagnetic Devices” (1968)], and also in Ref. 14, it was apparent that the RHY17/18 was strongly non-linear. At 5 T, its output was down ~25% from a linear extrapolation of the 0-1 T data and from the shape of the curve, it appeared likely that there would be an even greater droop at 15 T.Google Scholar
  40. 39.
    L. G. Rubin, D. R. Nelson, and H. H. Sample, Rev. Sci. Instrum. 46:1624 (1975).ADSCrossRefGoogle Scholar
  41. 40.
    H. H. Sample and L. G. Rubin, IEEE Trans. Magn. MAG-12:810 (1976).ADSCrossRefGoogle Scholar
  42. 41.
    We define sensitivity in Sec. II. C.Google Scholar
  43. 42.
    F. Kuhrt, Siemens Z. 28:370 (1956).Google Scholar
  44. 43.
    An example of an HEM with otherwise superior performance, but with only marginally useful sensitivity, can be found in Ref. 33.Google Scholar
  45. 44.
    The manufacturer specifies a value of 0.007%/°C for the FWB Model BHT921 at 300 K.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • L. G. Rubin
    • 1
  • H. H. Sample
    • 2
  1. 1.Francis Bitter National Magnet LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Physics DepartmentTufts UniversityMedfordUSA

Personalised recommendations