Advertisement

Hall Effect and the Beauty and Challenges of Science

  • A. C. Beer

Abstract

It is a great honor to be asked to participate in this commemorative symposium on the centennial of the discovery of the Hall effect here at Johns Hopkins. The Hall effect is a superb example of a phenomenon which, while simple in initial concept, is really very profound in its implications and application to a variety of solids of inherently differing characteristics. The evolution of the versatility of Hall data in interpreting complex transport in solids is indeed a classic example of the beauty and challenges of science. Let us try to follow some of the major developments in this progression of theoretical and experimental achievements.

Keywords

Magnetic Field Hall Effect Hall Coefficient Light Hole Mobility Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Fritzsche, Methods of Experimental Physics in: “Solid State Physics,” L. Marton, ed. Academic Press, New York (1959), Vol. 6, part B, pp. 145–160.Google Scholar
  2. 2.
    W. C. Dunlap, “An Introduction to Semiconductors,” Wiley, New York (1957), pp. 178–194.Google Scholar
  3. 3.
    J.-P. Jan, in: “Solid State Physics,” F. Seitz and D. Turnbull, eds., Academic Press, New York (1957), Vol. 5, pp. 17–24.Google Scholar
  4. 4.
    A. C. Beer, “Galvanomagnetic Effects in Semiconductors,” Academic Press, New York (1963)., pp. 54–68.zbMATHGoogle Scholar
  5. 5.
    E. H. Putley, “The Hall Effect and Related Phenomena,” Butter-worths, London (1960), pp. 23–55.Google Scholar
  6. 6.
    C. M. Hurd, “The Hall Effect in Metals and Alloys,” Plenum Press, New York (1972), pp. 183–200.CrossRefGoogle Scholar
  7. 7.
    See, for example p. 186 of Ref. 2; p. 20 of Ref. 3; pp. 57-59 of Ref. 4.Google Scholar
  8. 8.
    See, for example, P. P. Debye and E. M. Conwell, Phys. Rev. 93:693 (1954).ADSCrossRefGoogle Scholar
  9. 9.
    L. J. van der Pauw, Philips Research Repts. 13:1 (1958).Google Scholar
  10. L. J. van der Pauw, Philips Research Repts. 16:187 (1961).Google Scholar
  11. 10.
    Reference 3, pp. 22-24; Ref. 4, pp. 55, 56, and 66; Ref. 6, pp. 183-195.Google Scholar
  12. 10a. Reference 6, pp. 195-200.Google Scholar
  13. 10b.
    See, for example: T. Ambridge and C. J. Allen, Electronics Letters (Great Britain) 15: 648 (1979).CrossRefGoogle Scholar
  14. 11.
    Reference 4, p. 3.Google Scholar
  15. 12.
    See, for example, p. 7 of Ref. 4.Google Scholar
  16. 13.
    More discussion of this point can be found in Ref. 4, pp. 16 and 52.Google Scholar
  17. 14.For background information, see Ref. 4, pp. 6-9.Google Scholar
  18. 15.
    V. A. Johnson and F. M. Shipley, Phys. Rev. 90: 523 (1953).ADSzbMATHCrossRefGoogle Scholar
  19. 15a.
    Ref. 5, pp. 82-84.Google Scholar
  20. 16.
    See, for example, pp. 153, 154 of Ref. 1; pp. 183-185 of Ref. 2; pp. 21, 22 of Ref. 3; pp. 66, 346 of Ref. 4; pp. 49-53 of Ref. 5; pp. 193-195 of Ref. 6.Google Scholar
  21. 17.
    T. M. Dauphinee and E. Mooser, Rev. Sci. Instr. 26:660 (1955); discussed also in Ref. 3 (p. 22) and Ref. 4 (p. 66).ADSCrossRefGoogle Scholar
  22. 17a.
    See, for example, W. W. Scanlon, pp. 166-170 of Ref. 1; p. 191 of Ref. 2; pp. 9-11 of Ref. 3; pp. 66-68 of Ref. 4; pp. 26-32, 82-90 of Ref. 5; pp. 185-187, 190 of Ref. 6.Google Scholar
  23. 18.
    See, for example, M. Kohler, Ann. Physik 20: 891 (1934).ADSCrossRefGoogle Scholar
  24. D. Shoenberg, Proc. Cambridge Phil. Soc. 31: 271 (1935).ADSzbMATHCrossRefGoogle Scholar
  25. 19.
    C. Goldberg and R. E. Davis, Phys. Rev. 94: 1121 (1954).ADSCrossRefGoogle Scholar
  26. K. M. Koch, Z. Naturforsch. 10a:496 (1955); or see p. 69 of Ref. 4.ADSGoogle Scholar
  27. 20.
    H. B. G. Casimer and A. N. Gerritsen, Physica 8: 1107 (1941).ADSCrossRefGoogle Scholar
  28. H. B. G. Casimer, Revs. Modern Phys. 17: 343 (1945).ADSCrossRefGoogle Scholar
  29. 20a. Page 42 of Ref. 4.Google Scholar
  30. 21.
    L. Grabner, Phys. Rev. 117: 689 (1960).ADSCrossRefGoogle Scholar
  31. 22.
    See, for example, L. P. Kao and E. Katz, Phys. and Chem. Solids 6:223 (1958); p. 69 of Ref. 4.ADSCrossRefGoogle Scholar
  32. 22a.
    See also, for example, W. M. Bullis, Phys. Rev. 109:292 (1958); pp. 86-91 of Ref. 4.ADSCrossRefGoogle Scholar
  33. 23.
    See, for example, pp. 58-65 of Ref. 4.Google Scholar
  34. 24.
    Specific examples are found in Ref. 4, pp. 142, 226-264. For comprehensive analyses of germanium-type semiconductors, consult E. G. S. Paige, The Electrical Conductivity of Germanium, in: “Progress in Semiconductors,” A. Gibson and R. Burgess, eds., Wiley, New York (1964), Vol. 8, pp. 48-50. For inhomogeneity effects, see pp. 315-321 of Ref. 4. On p. 317, the equation and the figure apply to the case where the inherent magnetoresistance is small compared to the inhomogeneity effect. Otherwise, a factor ρ/ρo should multiply the brackets in Eq.(27.22) and a factor ρo/ρ, the ordinate in Fig. 50. For further details, consult R. T. Bate and A. C. Beer, J. Appl. Phys. 32: 800 (1961).Google Scholar
  35. 24a.For more details, consult pp. 34-37 of Ref. 1; pp. 179, 187-190 of Ref. 2; pp. 56, 316-323 of Ref. 4.Google Scholar
  36. 24b.
    See, for example: F. Seitz, “The Modern Theory of Solids,” McGraw-Hill, New York (1940), pp. 141, 316-319; R. A. Smith, “Wave Mechanics of Crystalline Solids,” Chapman and Hall, London (1963), pp. 124-127; J. M. Ziman, “Principles of the Theory of Solids,” Cambridge Univ. Press, Cambridge (1964), pp. 157-161.zbMATHGoogle Scholar
  37. 25.
    See, for example, pp. 99-101 of Ref. 4.Google Scholar
  38. 25a.
    J. Kołodziejczak, Acta Phys. Polonica 20: 379 (1961).zbMATHGoogle Scholar
  39. 26.Further details can be found in Ref. 4, p. 332.Google Scholar
  40. 26a.Derivations of these results can be found in Ref. 4, pp. 109, 121, 124-126.Google Scholar
  41. 26b.
    Ref. 4, pp. 142-127.Google Scholar
  42. 27.
    C. Herring, Bell System Tech. J. 34: 237 (1955).Google Scholar
  43. 28.
    R. Dexter, H. Zeiger, and B. Lax, Phys. Rev. 104:637 (1956); p. 184 of Ref. 4.ADSCrossRefGoogle Scholar
  44. 29.
    See, for example, M. Shibuya, Phys. Rev. 95:1385 (1954); pp. 247-251 of Ref. 4.ADSCrossRefGoogle Scholar
  45. 30.
    W. Mason, W. Hewitt, and R. Wick, J. Appl. Phys. 24: 166 (1953).ADSCrossRefGoogle Scholar
  46. 31.
    A. C. Beer and R. K. Willardson, Phys. Rev. 110:1286 (1958); pp. 198-200 of Ref. 4.ADSCrossRefGoogle Scholar
  47. 32.
    William Shockley, “Electrons and Holes in Semiconductors,” Van Nostrand, New York (1950), pp. 338–341.Google Scholar
  48. 33.
    C. Goldberg, E. Adams, and R. Davis, Phys. Rev. 105: 865 (1957).ADSCrossRefGoogle Scholar
  49. 34.
    H. Miyazawa, “Proc. Intern. Conf. Phys. Semicond., Exeter, 1962,” Inst. of Phys. and Phys. Soc., London (1962), p. 636.Google Scholar
  50. 35.
    R. S. Allgaier, Phys. Rev. 158: 699 (1967).ADSCrossRefGoogle Scholar
  51. 36.
    R. S. Allgaier, Phys. Rev. 165: 775 (1968).ADSCrossRefGoogle Scholar
  52. 37.
    R. S. Allgaier, Phys. Rev. B 2: 3869 (1970).ADSCrossRefGoogle Scholar
  53. P. H. Cowley and R. S. Allgaier, Phil. Mag. 29: 111 (1974).ADSCrossRefGoogle Scholar
  54. R. S. Allgaier and R. Perl, Phys. Rev. B 2: 877 (1970).ADSCrossRefGoogle Scholar
  55. 38.
    See, for example, Harvey Brooks, in: “Advances in Electronics and Electron Physics,” L. Marton, ed., Academic Press, New York (1955), Vol. VII, pp. 132 and 133; p. 148 of Ref. 1; pp. 148-167 of Ref. 4.Google Scholar
  56. 39.
    See, for example, Eq.(17.11) in Ref. 4.Google Scholar
  57. 39a.
    D. Howarth, R. Jones, and E. Putley, Proc. Phys. Soc. B70:124 (1957).ADSGoogle Scholar
  58. 39b.
    R. K. Willardson, T. C. Harman, and A. C. Beer, Phys. Rev. 96:1512 (1954); also p. 165-168 of Ref. 4.ADSCrossRefGoogle Scholar
  59. 40.
    Ref. 5, pp. 115-119.Google Scholar
  60. 40a.
    F. J. Morin, Phys. Rev. 93: 62 (1954).ADSzbMATHCrossRefGoogle Scholar
  61. 40b.
    See, for example, Donald Long, “Energy Bands in Semiconductors,” Interscience, New York (1968), pp. 100–109.Google Scholar
  62. 41.
    See, for example, L. W. Aukerman and R. K. Willardson, J. Appl. Phys. 31: 939 (1960).ADSCrossRefGoogle Scholar
  63. R. D. Baxter, F. J. Reid, and A. C. Beer, Phys. Rev. 162: 718 (1967).ADSCrossRefGoogle Scholar
  64. 41a.
    R. S. Allgaier, J. Appl. Phys. 36: 2429 (1965).ADSCrossRefGoogle Scholar
  65. 41b.
    R. S. Allgaier and B. B. Houston, Jr., J. Appl. Phys. 37: 302 (1966).ADSCrossRefGoogle Scholar
  66. 41c.
    A. C. Beer, J. Phys. Chem. Solids 8: 507 (1959).ADSCrossRefGoogle Scholar
  67. 42.
    R. T. Bate, J. C. Bell, and A. C. Beer, J. Appl. Phys. 32: 806 (1961).ADSCrossRefGoogle Scholar
  68. 43.
    C. M. Wolfe and G. E. Stillman, in: “Semiconductors and Semi-metals,” R. K. Willardson and A. C. Beer, eds., Academic Press, New York (1975), Vol. 10, pp. 175-220.Google Scholar
  69. 43a.
    C. Wolfe, G. Stillman, D. Spears, D. Hill, and F. Williams, J. Appl. Phys. 44: 732 (1973).ADSCrossRefGoogle Scholar
  70. 44.
    See pp. 56-66 of Ref. 6.Google Scholar
  71. 45.
    A. W. Smith and R. W. Sears, Phys. Rev. 34: 1466 (1929).ADSCrossRefGoogle Scholar
  72. E. M. Pugh, Phys. Rev. 36: 1503 (1930).ADSCrossRefGoogle Scholar
  73. E. M. Pugh and N. Rostoker, Revs. Modern Phys. 25: 151 (1953).ADSCrossRefGoogle Scholar
  74. 46.
    See also pp. 74-82 of Ref. 3; pp. 153-182 of Ref. 6.Google Scholar
  75. 47.
    See, for example, pp. 332-340 of Ref. 4.Google Scholar
  76. 48.
    E. M. Conwell, “High Field Transport in Semiconductors,” Academic Press, New York (1967); also pp. 379–381 of Ref. 4.Google Scholar
  77. 49.
    See pp. 365 and 366 of Ref. 4. On p. 365, the factor m*/mo in Eq.(31.2) should be inverted.Google Scholar
  78. 50.
    Pages 372-379 of Ref. 4.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • A. C. Beer
    • 1
  1. 1.Battelle Columbus LaboratoriesColumbusUSA

Personalised recommendations