Skip to main content

Hall Effect and the Beauty and Challenges of Science

  • Chapter
The Hall Effect and Its Applications

Abstract

It is a great honor to be asked to participate in this commemorative symposium on the centennial of the discovery of the Hall effect here at Johns Hopkins. The Hall effect is a superb example of a phenomenon which, while simple in initial concept, is really very profound in its implications and application to a variety of solids of inherently differing characteristics. The evolution of the versatility of Hall data in interpreting complex transport in solids is indeed a classic example of the beauty and challenges of science. Let us try to follow some of the major developments in this progression of theoretical and experimental achievements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Fritzsche, Methods of Experimental Physics in: “Solid State Physics,” L. Marton, ed. Academic Press, New York (1959), Vol. 6, part B, pp. 145–160.

    Google Scholar 

  2. W. C. Dunlap, “An Introduction to Semiconductors,” Wiley, New York (1957), pp. 178–194.

    Google Scholar 

  3. J.-P. Jan, in: “Solid State Physics,” F. Seitz and D. Turnbull, eds., Academic Press, New York (1957), Vol. 5, pp. 17–24.

    Google Scholar 

  4. A. C. Beer, “Galvanomagnetic Effects in Semiconductors,” Academic Press, New York (1963)., pp. 54–68.

    MATH  Google Scholar 

  5. E. H. Putley, “The Hall Effect and Related Phenomena,” Butter-worths, London (1960), pp. 23–55.

    Google Scholar 

  6. C. M. Hurd, “The Hall Effect in Metals and Alloys,” Plenum Press, New York (1972), pp. 183–200.

    Book  Google Scholar 

  7. See, for example p. 186 of Ref. 2; p. 20 of Ref. 3; pp. 57-59 of Ref. 4.

    Google Scholar 

  8. See, for example, P. P. Debye and E. M. Conwell, Phys. Rev. 93:693 (1954).

    Article  ADS  Google Scholar 

  9. L. J. van der Pauw, Philips Research Repts. 13:1 (1958).

    Google Scholar 

  10. L. J. van der Pauw, Philips Research Repts. 16:187 (1961).

    Google Scholar 

  11. Reference 3, pp. 22-24; Ref. 4, pp. 55, 56, and 66; Ref. 6, pp. 183-195.

    Google Scholar 

  12. 10a. Reference 6, pp. 195-200.

    Google Scholar 

  13. See, for example: T. Ambridge and C. J. Allen, Electronics Letters (Great Britain) 15: 648 (1979).

    Article  Google Scholar 

  14. Reference 4, p. 3.

    Google Scholar 

  15. See, for example, p. 7 of Ref. 4.

    Google Scholar 

  16. More discussion of this point can be found in Ref. 4, pp. 16 and 52.

    Google Scholar 

  17. 14.For background information, see Ref. 4, pp. 6-9.

    Google Scholar 

  18. V. A. Johnson and F. M. Shipley, Phys. Rev. 90: 523 (1953).

    Article  ADS  MATH  Google Scholar 

  19. Ref. 5, pp. 82-84.

    Google Scholar 

  20. See, for example, pp. 153, 154 of Ref. 1; pp. 183-185 of Ref. 2; pp. 21, 22 of Ref. 3; pp. 66, 346 of Ref. 4; pp. 49-53 of Ref. 5; pp. 193-195 of Ref. 6.

    Google Scholar 

  21. T. M. Dauphinee and E. Mooser, Rev. Sci. Instr. 26:660 (1955); discussed also in Ref. 3 (p. 22) and Ref. 4 (p. 66).

    Article  ADS  Google Scholar 

  22. See, for example, W. W. Scanlon, pp. 166-170 of Ref. 1; p. 191 of Ref. 2; pp. 9-11 of Ref. 3; pp. 66-68 of Ref. 4; pp. 26-32, 82-90 of Ref. 5; pp. 185-187, 190 of Ref. 6.

    Google Scholar 

  23. See, for example, M. Kohler, Ann. Physik 20: 891 (1934).

    Article  ADS  Google Scholar 

  24. D. Shoenberg, Proc. Cambridge Phil. Soc. 31: 271 (1935).

    Article  ADS  MATH  Google Scholar 

  25. C. Goldberg and R. E. Davis, Phys. Rev. 94: 1121 (1954).

    Article  ADS  Google Scholar 

  26. K. M. Koch, Z. Naturforsch. 10a:496 (1955); or see p. 69 of Ref. 4.

    ADS  Google Scholar 

  27. H. B. G. Casimer and A. N. Gerritsen, Physica 8: 1107 (1941).

    Article  ADS  Google Scholar 

  28. H. B. G. Casimer, Revs. Modern Phys. 17: 343 (1945).

    Article  ADS  Google Scholar 

  29. 20a. Page 42 of Ref. 4.

    Google Scholar 

  30. L. Grabner, Phys. Rev. 117: 689 (1960).

    Article  ADS  Google Scholar 

  31. See, for example, L. P. Kao and E. Katz, Phys. and Chem. Solids 6:223 (1958); p. 69 of Ref. 4.

    Article  ADS  Google Scholar 

  32. See also, for example, W. M. Bullis, Phys. Rev. 109:292 (1958); pp. 86-91 of Ref. 4.

    Article  ADS  Google Scholar 

  33. See, for example, pp. 58-65 of Ref. 4.

    Google Scholar 

  34. Specific examples are found in Ref. 4, pp. 142, 226-264. For comprehensive analyses of germanium-type semiconductors, consult E. G. S. Paige, The Electrical Conductivity of Germanium, in: “Progress in Semiconductors,” A. Gibson and R. Burgess, eds., Wiley, New York (1964), Vol. 8, pp. 48-50. For inhomogeneity effects, see pp. 315-321 of Ref. 4. On p. 317, the equation and the figure apply to the case where the inherent magnetoresistance is small compared to the inhomogeneity effect. Otherwise, a factor ρ/ρo should multiply the brackets in Eq.(27.22) and a factor ρo/ρ, the ordinate in Fig. 50. For further details, consult R. T. Bate and A. C. Beer, J. Appl. Phys. 32: 800 (1961).

    Google Scholar 

  35. 24a.For more details, consult pp. 34-37 of Ref. 1; pp. 179, 187-190 of Ref. 2; pp. 56, 316-323 of Ref. 4.

    Google Scholar 

  36. See, for example: F. Seitz, “The Modern Theory of Solids,” McGraw-Hill, New York (1940), pp. 141, 316-319; R. A. Smith, “Wave Mechanics of Crystalline Solids,” Chapman and Hall, London (1963), pp. 124-127; J. M. Ziman, “Principles of the Theory of Solids,” Cambridge Univ. Press, Cambridge (1964), pp. 157-161.

    MATH  Google Scholar 

  37. See, for example, pp. 99-101 of Ref. 4.

    Google Scholar 

  38. J. Kołodziejczak, Acta Phys. Polonica 20: 379 (1961).

    MATH  Google Scholar 

  39. 26.Further details can be found in Ref. 4, p. 332.

    Google Scholar 

  40. 26a.Derivations of these results can be found in Ref. 4, pp. 109, 121, 124-126.

    Google Scholar 

  41. Ref. 4, pp. 142-127.

    Google Scholar 

  42. C. Herring, Bell System Tech. J. 34: 237 (1955).

    Google Scholar 

  43. R. Dexter, H. Zeiger, and B. Lax, Phys. Rev. 104:637 (1956); p. 184 of Ref. 4.

    Article  ADS  Google Scholar 

  44. See, for example, M. Shibuya, Phys. Rev. 95:1385 (1954); pp. 247-251 of Ref. 4.

    Article  ADS  Google Scholar 

  45. W. Mason, W. Hewitt, and R. Wick, J. Appl. Phys. 24: 166 (1953).

    Article  ADS  Google Scholar 

  46. A. C. Beer and R. K. Willardson, Phys. Rev. 110:1286 (1958); pp. 198-200 of Ref. 4.

    Article  ADS  Google Scholar 

  47. William Shockley, “Electrons and Holes in Semiconductors,” Van Nostrand, New York (1950), pp. 338–341.

    Google Scholar 

  48. C. Goldberg, E. Adams, and R. Davis, Phys. Rev. 105: 865 (1957).

    Article  ADS  Google Scholar 

  49. H. Miyazawa, “Proc. Intern. Conf. Phys. Semicond., Exeter, 1962,” Inst. of Phys. and Phys. Soc., London (1962), p. 636.

    Google Scholar 

  50. R. S. Allgaier, Phys. Rev. 158: 699 (1967).

    Article  ADS  Google Scholar 

  51. R. S. Allgaier, Phys. Rev. 165: 775 (1968).

    Article  ADS  Google Scholar 

  52. R. S. Allgaier, Phys. Rev. B 2: 3869 (1970).

    Article  ADS  Google Scholar 

  53. P. H. Cowley and R. S. Allgaier, Phil. Mag. 29: 111 (1974).

    Article  ADS  Google Scholar 

  54. R. S. Allgaier and R. Perl, Phys. Rev. B 2: 877 (1970).

    Article  ADS  Google Scholar 

  55. See, for example, Harvey Brooks, in: “Advances in Electronics and Electron Physics,” L. Marton, ed., Academic Press, New York (1955), Vol. VII, pp. 132 and 133; p. 148 of Ref. 1; pp. 148-167 of Ref. 4.

    Google Scholar 

  56. See, for example, Eq.(17.11) in Ref. 4.

    Google Scholar 

  57. D. Howarth, R. Jones, and E. Putley, Proc. Phys. Soc. B70:124 (1957).

    ADS  Google Scholar 

  58. R. K. Willardson, T. C. Harman, and A. C. Beer, Phys. Rev. 96:1512 (1954); also p. 165-168 of Ref. 4.

    Article  ADS  Google Scholar 

  59. Ref. 5, pp. 115-119.

    Google Scholar 

  60. F. J. Morin, Phys. Rev. 93: 62 (1954).

    Article  ADS  MATH  Google Scholar 

  61. See, for example, Donald Long, “Energy Bands in Semiconductors,” Interscience, New York (1968), pp. 100–109.

    Google Scholar 

  62. See, for example, L. W. Aukerman and R. K. Willardson, J. Appl. Phys. 31: 939 (1960).

    Article  ADS  Google Scholar 

  63. R. D. Baxter, F. J. Reid, and A. C. Beer, Phys. Rev. 162: 718 (1967).

    Article  ADS  Google Scholar 

  64. R. S. Allgaier, J. Appl. Phys. 36: 2429 (1965).

    Article  ADS  Google Scholar 

  65. R. S. Allgaier and B. B. Houston, Jr., J. Appl. Phys. 37: 302 (1966).

    Article  ADS  Google Scholar 

  66. A. C. Beer, J. Phys. Chem. Solids 8: 507 (1959).

    Article  ADS  Google Scholar 

  67. R. T. Bate, J. C. Bell, and A. C. Beer, J. Appl. Phys. 32: 806 (1961).

    Article  ADS  Google Scholar 

  68. C. M. Wolfe and G. E. Stillman, in: “Semiconductors and Semi-metals,” R. K. Willardson and A. C. Beer, eds., Academic Press, New York (1975), Vol. 10, pp. 175-220.

    Google Scholar 

  69. C. Wolfe, G. Stillman, D. Spears, D. Hill, and F. Williams, J. Appl. Phys. 44: 732 (1973).

    Article  ADS  Google Scholar 

  70. See pp. 56-66 of Ref. 6.

    Google Scholar 

  71. A. W. Smith and R. W. Sears, Phys. Rev. 34: 1466 (1929).

    Article  ADS  Google Scholar 

  72. E. M. Pugh, Phys. Rev. 36: 1503 (1930).

    Article  ADS  Google Scholar 

  73. E. M. Pugh and N. Rostoker, Revs. Modern Phys. 25: 151 (1953).

    Article  ADS  Google Scholar 

  74. See also pp. 74-82 of Ref. 3; pp. 153-182 of Ref. 6.

    Google Scholar 

  75. See, for example, pp. 332-340 of Ref. 4.

    Google Scholar 

  76. E. M. Conwell, “High Field Transport in Semiconductors,” Academic Press, New York (1967); also pp. 379–381 of Ref. 4.

    Google Scholar 

  77. See pp. 365 and 366 of Ref. 4. On p. 365, the factor m*/mo in Eq.(31.2) should be inverted.

    Google Scholar 

  78. Pages 372-379 of Ref. 4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beer, A.C. (1980). Hall Effect and the Beauty and Challenges of Science. In: Chien, C.L., Westgate, C.R. (eds) The Hall Effect and Its Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1367-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1367-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1369-5

  • Online ISBN: 978-1-4757-1367-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics