Phospholipids pp 241-255 | Cite as

Dietary Egg Yolk-Derived Phospholipids: Rationale for their Benefits in Syndromes of Senescence, Drug Withdrawal, and Aids

  • Wolfgang Huber
  • Parris M. Kidd


Phospholipids are coming of age as dietary supplements, having diverse potential applications and an enviably good ratio of benefit to risk. Phospholipids are indispensable components of cellular membrane systems, whatever their level of complexity, and the phospholipids of cellular membranes can be significantly manipulated in situ by manipulating dietary lipid intake. Thus, through provision of the appropriate types and amounts of lipids in the daily diet, the potential exists to profoundly affect cellular membrane performance, and with it cellular function overall (53).


Cholesteryl Ester Membrane Fluidity Phosphatidic Acid Envelop Virus Vesicular Stomatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alderson, J. C. E., and Green, C., 1975, Enrichment of lymphocytes with cholesterol and its effect on lymphocyte activation, FEBS Lett., 52:208–211.PubMedCrossRefGoogle Scholar
  2. 2.
    Aloia, R. C., Jenson, F. C., Curtain, C. C., Mobley, P. W., and Gordon, L. M., 1988, Lipid composition and fluidity of the human immunodeficiency virus, Proc. Natl. Acad. Sci. USA. 85:900–904.PubMedCrossRefGoogle Scholar
  3. 3.
    Antonian, L., Shinitzky, M., Samuel, D., Lippa, A.S., 1987, AL721, a novel membrane fluidizer, Neurosci. Behav. Revs., 11:399–413.CrossRefGoogle Scholar
  4. 4.
    Araki, K., and Rifkind, J.M., 1980, Erythrocyte membrane cholesterol: an explanation of the aging effect on the rate of hemolysis, Life Sciences, 26:2223–2230.PubMedCrossRefGoogle Scholar
  5. 5.
    Artom, C., and Swanson, M. A., 1948, On the absorption of phospholipides, J.Biol. Chem., 175:871–881.PubMedGoogle Scholar
  6. 6.
    Bierman, E. L., and Oram, J. F., 1987, The interaction of high-density lipoproteins with extrahepatic cells, Am. Ht. J., 113 (2, pt.2):549–560.CrossRefGoogle Scholar
  7. 7.
    Biesbroeck, R., Oram, J. F., Albers, J. J., and Bierman, E. L., 1983, Specific high affinity binding of high density lipoproteins to cultured human skin fibroblasts and arterial smooth muscle cells. J. Clin. Invest., 71:525–530.PubMedCrossRefGoogle Scholar
  8. 8.
    Boucrot, P., 1972, Is there an entero-hepatic circulation of the bile phospholipids?. Lipids, 7:282–288.PubMedCrossRefGoogle Scholar
  9. 9.
    Bruckdorfer, K. R., Demel, R. A., De Gier, J., and van Deenen, L. L. M., 1969, The effect of partial replacements of membrane cholesterol by other steroids on the osmotic fragility and glycerol permeability of erythrocytes, Biochim. Biophvs. Acta. 183:334–345.CrossRefGoogle Scholar
  10. 10.
    Caras, I. W., and Weddell, G. N., 1989, Signal peptide for protein secretion directing glycophospholipid membrane anchor attachment, Science, 243:1196–1198.PubMedCrossRefGoogle Scholar
  11. 11.
    Chapkin, R. S., Somers, S. D., and Erickson, K. L., 1988, Dietary manipulation of macrophage phospholipid classes: Selective increase of dihomogammalinolenic acid, Lipids, 23 (8):766–770.PubMedCrossRefGoogle Scholar
  12. 12.
    Cuthbert, J. A., and Lipsky, P. E., 1986, Promotion of human T lymphocyte activation and proliferation by fatty acids in low density and high density lipoproteins, J. Biol. Chem., 261:3620–3627.PubMedGoogle Scholar
  13. 13.
    Dogget, D. L., Chang, M.-P., Makinodan, T., and Strehler, B. L., 1981, Cellular and molecular aspects of immune system aging, Mol. Cell. Biochem., 37:137–156.CrossRefGoogle Scholar
  14. 14.
    Ferber, E., De Pasquale, G. G., and Resch, K., 1975, Phospholipid metabolism of stimulated lymphocytes: composition of phospholipid fatty acids, Biochim. Biophys. Acta, 398:364–368.PubMedCrossRefGoogle Scholar
  15. 15.
    Fisher, D. B., and Mueller, G. C., 1968, An early alteration in the phospholipid metabolism of lymphocytes by phyohemagglutinin, Proc. Natl. Acad. Sci. USA, 60:1396–1402.PubMedCrossRefGoogle Scholar
  16. 16.
    Friedman, M., Byers, S. O., and Rosenman, R. H., 1957, Resolution of aortic atherosclerotic infiltration in the rabbit by phosphatide infusion, Proc. Soc. Exp. Biol. Med., 95:586–588.PubMedGoogle Scholar
  17. 17.
    Gallo, R. C., and Montagnier, L., 1988, AIDS in 1988. Sci. Am, 259:41–48.PubMedCrossRefGoogle Scholar
  18. 18.
    Goebel, F.-D., Bogner, J., Matuschke, A., Nerl, C., and Gurtler, L., 1988, Clinical findings after administration of lipids in AIDS — A pilot study, IVth Intl. Conf. AIDS. Stockholm. Abst. No. 3531.Google Scholar
  19. 19.
    Goppelt, M., Kohler, L., and Resch, K., 1985, Functional role of lipid metabolism in activated T-lymphocytes, Biochim. Biophvs. Acta, 833:463–472.CrossRefGoogle Scholar
  20. 20.
    Gorter, E., and Grendel, F., 1925, On bimolecular layers of lipoids on the chromocytes of the blood, J. Exp. Med., 41:439–443.PubMedCrossRefGoogle Scholar
  21. 21.
    Grieco, M. H., Lange, M., Buimovici-Klein, M., Reddy, M., Englard, A., McKinley, G. F., Ong, K., and Metroka, C., 1988, Open study of AL 721 treatment of HIV-infected subjects with generalized lymphadenopathy syndrome: An eight week open trial and follow-up. Antiviral Res., 9:177–190.PubMedCrossRefGoogle Scholar
  22. 22.
    Grillone, L. R., Clark, M. A., Godfrey, R. W., Stassen, F., and Crooke, S. T., 1988, Vasopressin induces VI receptors to activate phosphatidylinositol-and phosphatidylcholine-specific phospholipase C and stimulates the release of arachidonic acid by at least two pathways in the smooth muscle cell line, A-10, J. Biol. Chem., 263:2658–2663.PubMedGoogle Scholar
  23. 23.
    Hannun, Y. A., and Bell, R. M., 1989, Functions of sphingolipids and sphingolipid breakdown products in cellular regulation, Science, 243:500–507.PubMedCrossRefGoogle Scholar
  24. 24.
    Heron, D. S., Shinitzky, M., and Samuel, D., 1983, Alleviation of drug withdrawal symptoms by treatment with a potent mixture of natural lipids, Eur. J. Pharmacol., 83:253–261.CrossRefGoogle Scholar
  25. 25.
    Hershkowitz, M., Heron, D. S., Samuel, D., and Shinitzky, M., 1983, Modulation of protein phosphorylation and receptor binding in synaptic membranes by changes in lipid fluidity: Implication for aging, in: “Progress in Brain Research,” Gispen, W. H. and Routtenberg, A., ed, p:419–434, Elsevier Biomédical Press, Amsterdam.Google Scholar
  26. 26.
    Hitzemann, R.J., Harris, R.A., Loh, H.H., 1984, Synaptic membrane fluidity and function, in: “Physiology of Membrane Fluidity,” Shinitzky, M., ed, p: 110–119, CRC Press, Boca Raton, Florida.Google Scholar
  27. 27.
    Hoelzl, J., and Wagner, H., 1971, Über den Einbau von intraduodenal appliziertem 14C732P-Polyen-Phosphatidylcholin in die Leber von Ratten und seine Ausscheidung durch die Galle, Naturforsch, 26B:1151–1158.Google Scholar
  28. 28.
    Howard, A. N., Patelski, J., Bowyer, D. E., and Gresham, G. A., 1971, Atherosclerosis induced in hypercholesterolaemic baboons by immunological injury; and the effects of intravenous polyunsaturated phosphatidyl choline, Atherosclerosis, 14:17–29.PubMedCrossRefGoogle Scholar
  29. 29.
    James, J. S., 1987, Al 721 survey results: Preliminary report, AIDS Treatment News, No. 39:1–7.Google Scholar
  30. 30.
    Johnson, D. A., Lee, N. M., Cooke, R., and Loh, H. H., 1979, Ethanol-induced fluidization of brain lipid bilayers: required presence of cholesterol in membranes for the expression of tolerance, Mol. Pharmacol., 15:739–746.PubMedGoogle Scholar
  31. 31.
    Kay, J. E., 1968, Phytohaemagglutinin: An early effect on lymphocyte lipid metabolism, Nature, 219:172–173.PubMedCrossRefGoogle Scholar
  32. 32.
    Kornfeld, H., Cruikshank, W. W., Pyle, S. W., Berman, J. S., and Center, D.M., 1988, Lymphocyte activation by HIV-1 envelope glycoprotein, Nature, 335:445–448.PubMedCrossRefGoogle Scholar
  33. 33.
    Lehtinen, M., Koivisto, V., Lehtinen, P., Aaran, R.-K., and Leinikki, P., 1988, Phospholipase A2 activity is copurified together with herpes simplex virus-specified Fc receptor proteins, Intervirologv, 29:50–56.Google Scholar
  34. 34.
    Lynn, W. S., Tweedale, A., and Cloyd, M. W., 1988, Human immunodeficiency virus (HIV-1) cytotoxicity: perturbation of the cell membrane and depression of phospholipid synthesis, Virology, 163:43–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Lyte, M., and Shinitzky, M., 1985, A special lipid mixture for membrane fluidization. Biochim. Biophvs. Acta, 812:133–138.CrossRefGoogle Scholar
  36. 36.
    Matthews, R. E. F., 1985, Viral taxonomy for the nonvirologist, Ann. Rev. Microbiol., 39:451–474.CrossRefGoogle Scholar
  37. 37.
    Meade, C. J., and Mertin, J., 1978, Fatty Acids and Immunity, Adv. Lipid Res., 16:127–165.PubMedGoogle Scholar
  38. 38.
    Mendez, A. J., He, J. L., Huang, H. S., Wen, S. R., and Hsia, S. L., 1988, Interaction of rabbit lipoproteins and red blood cells with liposomes of egg yolk phospholipids, Lipids, 23:961–967.PubMedCrossRefGoogle Scholar
  39. 39.
    Miller, K. W., and Small, D. M., 1987, Structure of triglyceride-rich lipoproteins: An analysis of core and surface phases, in: “Plasma Lipoproteins,” Gotto, A. M., ed, p:1–75, Elsevier Science Publishers, New York.CrossRefGoogle Scholar
  40. 40.
    Moore, N. F., Patzer, E. J., Shaw, J. M., Thompson, T. E., and Wagner, R. R., 1978, Interaction of vesicular stomatitis virus with lipid vesicles: Depletion of cholesterol and effect on virion membrane fluidity and infectivity, J.Virol, 27:320–329.PubMedGoogle Scholar
  41. 41.
    Oram, J. F., Brinton, E. A., and Bierman, E. L., 1983, Regulation of high-density-lipoprotein receptor activity in cultured human skin fibroblasts and human arterial smooth muscle cells. J. Clin. Invest., 72:1611–1615.PubMedCrossRefGoogle Scholar
  42. 42.
    Pal, R., Barenholz, Y., and Wagner, R. R., 1981, Depletion and exchange of cholesterol from the membrane of vesicular stomatitis virus by interaction with serum lipoproteins or poly(vinylpyrrolidone) complexed with bovine serum albumin, Biochem., 20:530–539.CrossRefGoogle Scholar
  43. 43.
    Pal, R., Petri, W. A., and Wagner, R. R., 1980, Alteration of the membrane lipid composition and infectivity of vesicular stomatitis virus by growth in a Chinese hamster ovary cell sterol mutant and in lipid-supplemented baby hamster kidney clone 21 cells. J. Biol. Chem., 255:7688–7693.PubMedGoogle Scholar
  44. 44.
    Rabinowich, H., Lyte, M., Steiner, Z., Klajman, A., and Shinitzky, M., 1987, Augmentation of mitogen responsiveness in the aged by a special lipid diet AL 721, Mechs. Ageing Dev., 40:131–138.CrossRefGoogle Scholar
  45. 45.
    Rivnay, B., Globerson, A., and Shinitzky, M., 1978, Perturbation of lymphocyte response to concanavalin A by exogenous cholesterol and lecithin, Eur. J. Immunol., 8:185–189.PubMedCrossRefGoogle Scholar
  46. 46.
    Rivnay, B., Globerson, A., and Shinitzky, M., 1979, Viscosity of lymphocyte plasma membranes in aging mice and its possible relation to serum cholesterol, Mechs. Ageing Dev., 10:71–76.CrossRefGoogle Scholar
  47. 47.
    Rivnay, B., Bergman, S., Shinitzky, M., Globerson, A., 1980, Correlations between membrane viscosity, serum cholesterol, lymphocyte activation, and aging in man, Mechs. Ageing Dev., 12:119–126.CrossRefGoogle Scholar
  48. 48.
    Rouser, G., Kritchevsky, G., 1972, Lipids in the nervous system of different species as a function of age, Adv. Lipid Res., 10:261–360.PubMedGoogle Scholar
  49. 49.
    Sarin, P. S., Gallo, R. C., Scheer, D. I., Crews, F., and Lippa, A. S., 1985, Effects of a novel compound (AL 721) on HTLV-III infectivity in vitro, New Engl. J. Med., 313:1289–1290.PubMedCrossRefGoogle Scholar
  50. 50.
    Shoemaker, J. D., Millard, M. C., and Johnson, P. B., 1987, Mixed leukocyte cholesterol in HTLV-III (HIV-1) infection, Fed. Proc., 46:1318 (Abstract).Google Scholar
  51. 51.
    Simons, K., Garoff, H., and Helenius, A., 1982, How an animal virus gets into and out of its host cell, Sci. Am., 246:58–63.PubMedCrossRefGoogle Scholar
  52. 52.
    Skornick, Y., Yust, I., Zakuth, V., Asner, A., Vardinon, N., and Shinitzky, M., 1988, Treatment of AIDS patients with AL 721. IVth Intl. Conf. AIDS. Stockholm. Abst. No. 3529.Google Scholar
  53. 53.
    Spector, A. A., and Yorek, M. A., 1985, Membrane lipid composition and cellular function, J. Lipid Res., 26:1015–1035.PubMedGoogle Scholar
  54. 54.
    Stafford, W. W., and Day, C. E., 1975, Regression of atherosclerosis effected by intravenous phospholipid, Artery, 1:106–114.Google Scholar
  55. 55.
    Stein, O., and Stein, Y., 1973, The removal of cholesterol from Landschutz Ascites cells by high-density apolipoprotein, Biochim. Biophvs. Acta, 326:232–244.CrossRefGoogle Scholar
  56. 56.
    Stryer, L., 1988, “Biochemistry” (3rd Edit.), W. H. Freeman, New York.Google Scholar
  57. 57.
    Traill, K. N., Offner, F., Winter, U., Paltauf, F., and Wick, G., 1988, Lipid requirements of human T lymphocytes stimulated with mitogen in serum-free medium. Membrane fluidity changes are an artefact of lipid (AL 721) uptake by monocytes, Immunobiol., 176:450–464.CrossRefGoogle Scholar
  58. 58.
    Traill, K. N., and Wick, G., 1984, Lipids and lymphocyte function, Immunol. Today, 5:70–76.CrossRefGoogle Scholar
  59. 59.
    Vaughan, C., 1987, Second wind for second-messenger research, BioScience, 37:642–650.CrossRefGoogle Scholar
  60. 60.
    Vega, G. L., and Grundy, S. M., 1987, Mechanisms of primary hypercholesterolemia in humans, Am. Heart J., 113 (2, pt. 2):493–502.PubMedCrossRefGoogle Scholar
  61. 61.
    Willer, A., Buff, K., Goebel, F.-D., and Erfle, V., 1988, HIV-1 induced membrane alterations increase susceptibility to cytolysis by lipid formulations, IVth Intl. Conf. AIDS. Stockholm. Abst. No. 3535.Google Scholar
  62. 62.
    Williams, K. J., and Scanu, A. M., 1986, Uptake of endogenous cholesterol by a synthetic lipoprotein, Biochim. Biophvs. Acta, 875:183–194.CrossRefGoogle Scholar
  63. 63.
    Williams, K. J., Werth, V. P., and Wolff, J. A., 1984, Intravenously administered lecithin liposomes: A synthetic antiatherogenic lipid particle, Persp. Biol. Med., 27:417–431.Google Scholar
  64. 64.
    Williams, L. L., Doody, D. M., and Horrocks, L. A., 1988, Serum fatty acid proportions are altered during the year following acute Epstein-Barr Virus infection, Lipids, 23:981–988.PubMedCrossRefGoogle Scholar
  65. 65.
    Williams, K. J., Tall, A. R., Bisgaier, C., and Brocia, R., 1987, Phospholipid liposomes acquire apolipoprotein E in atherogenic plasma and block cholesterol loading of cultured macrophages, J. Clin. Invest., 79:1466–1472.PubMedCrossRefGoogle Scholar
  66. 66.
    Yeagle, P. L., 1988, Cholesterol and the cell membrane, in: “The Biology of Cholesterol,” Yeagle, P. L., ed, p:121–145, CRC Press, Boca Raton.Google Scholar
  67. 67.
    Yust, I., Vardinon, N., Skornik, Y., Zakuth, V., and Shinitzky, M., 1988, Reduction of circulating HIV antigen in sero-positive patients after treatment with AL 721, IVth Intl. Conf. AIDS. Stockholm. Abst. No. 3530.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Wolfgang Huber
    • 1
  • Parris M. Kidd
    • 1
  1. 1.HK Biomedical, IncorporatedBerkeleyUSA

Personalised recommendations