Phospholipids pp 219-231 | Cite as

Phospholipids and Choline Deficiency

  • Steven H. Zeisel

Abstract

Lecithin (phosphatidylcholine; PtdCho) is the major phospholipid constituent of most membranes, and it is vital to the normal function of every cell and organ. PtdCho is synthesized from choline in all organs29,30. Much of this choline comes from the diet. PtdCho, in foods such as liver, eggs, soybeans and peanuts, is the most important source of choline in the human diet29. This dietary choline interacts with methionine and folate metabolism so that changes in the availability of choline alter biological methylation reactions. Choline is also used by tissues to make acetylcholine. This chapter will focus on PtdCho as a source of choline in the diet, and upon the biological consequences of diminished availability of choline.

Keywords

Deficient Group Choline Deficiency Choline Deficient Diet Choline Supplementation Dietary Choline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atsushi, L, Hellerstein, E. E., Hegsted, D. M. 1963, Composition of dietary fat and the accumulation of liver lipid in the choline-deficient rat. J. Nutr. 79: 488–92.Google Scholar
  2. 2.
    Barak, A. J, and Tuma, D. J., 1983, Betaine, metabolic by-product or vital methylating agent? [Review]. Life Sci. 32: 771–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Berridge, M. J. and Taylor, C. W., 1988, Inositol trisphosphate and calcium signaling. Cold Spring Harbor Symposia On Quantitative Biology. 2: 927–33.CrossRefGoogle Scholar
  4. 4.
    Best, C. H. and Huntsman, M. E., 1932, The effects of the components of lecithin upon the deposition of fat in the liver. J. Physiol. 75: 405–12.PubMedGoogle Scholar
  5. 5.
    Besterman, J. M., Duronio, V. and Cuatrecasas, P., 1986, Rapid formation of diacylglycerol from phosphatidylcholine: a pathway for generation of a second messenger. Proc. Nat. Acad. Sci. U. S. A. 83: 6785–9.CrossRefGoogle Scholar
  6. 6.
    Blusztajn, J. K. and Zeisel, S. H., 1989, 1,2-sn-diacylglycerol accumulates in cholinedeficient liver. A possible mechanism of hepatic carcinogenesis via alteration in protein kinase C activity? FEBS Lett. 243: 267–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Buckley, A., Crowe, P. and Russell, D., 1988, Rapid activation of protein kinase C in isolated rat liver nuclei by prolactin, a known hepatic mitogen. Proc. Natl. Acad. Sci. USA. 85: 8649–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Chao, C. K., Pomfret, E. A. and Zeisel, S. H., 1988, Uptake of choline by rat mammary-gland epithelial cells. Biochem. J. 254: 33–8.PubMedGoogle Scholar
  9. 9.
    Chen, S. H., Estes, L. W. and Lombardi, B., 1972, Lecithin depletion in hepatic microsomal membranes of rats fed on a choline-deficient diet. Exp. Mol. Pathol. 17: 176–86.PubMedCrossRefGoogle Scholar
  10. 10.
    Eagle, H., 1955, The minimum vitamin requirements of the L and Hela cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J. Exptl. Med. 102: 595–600.CrossRefGoogle Scholar
  11. 11.
    Finkelstein, J. D., Martin, J. J., Harris, B. J. and Kyle, W. E., 1982, Regulation of the betaine content of rat liver. Arch. Biochem. Biophys. 218: 169–73.PubMedCrossRefGoogle Scholar
  12. 12.
    Finkelstein, J. D., Martin, J. J., Harris, B. J. and Kyle, W. E., 1983, Regulation of hepatic betaine-homocysteine methyltransferase by dietary betaine. Journal of Nutrition. 113:519–21.PubMedGoogle Scholar
  13. 13.
    Ghoshal, A. K. and Farber, E., 1984, The induction of liver cancer by dietary deficiency of choline and methionine without added carcinogens. Carcinogenesis. 5: 1367–1370.PubMedCrossRefGoogle Scholar
  14. 14.
    Haines, D. S. and Rose, C. I., 1970, Impaired labelling of liver phosphatidylethanolamine from ethanolamine-14C in choline deficiency. Can. J. Biochem. 48: 885–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Hall, R. I., Ross, L. H., Bozovic, M. G. and Grant, J. P., 1985, The effect of choline supplementation on hepatic steatosis in the parenterally fed rat. J. Parent. Ent. Nutr. 9: 597–9.CrossRefGoogle Scholar
  16. 16.
    Kaminski, D. L., Adams, A. and Jellinek, M., 1980, The effect of hyperalimentation on hepatic lipid content and lipogenic enzyme activity in rats and man. Surgery. 88: 93–100.PubMedGoogle Scholar
  17. 17.
    Lombardi, B., Pani, P. and Schlunk, F. F., 1968, Choline-deficiency fatty liver: impaired release of hepatic triglycérides. J. Lipid Res. 9: 437–46.PubMedGoogle Scholar
  18. 18.
    Meck, W. H., Smith, R. A. and Williams, C. L., 1988, Pre-and postnatal choline supplementation produces long-term facilitation of spatial memory. Dev. Psychobiol. 21: 339–53.PubMedCrossRefGoogle Scholar
  19. 19.
    Megidish, T. and Mazurek, N., 1989, A mutant protein kinase C that can transform fibroblasts. Nature. 342: 807–811.PubMedCrossRefGoogle Scholar
  20. 20.
    Michael, U. F., Cookson, S. L., Chavez, R. and Pardo, V., 1975, Renal function in the choline deficient rat. Proc. Soc. Exp. Biol. Med. 150: 672–76.PubMedGoogle Scholar
  21. 21.
    Newberne, P. M. and Rogers, A. E., 1986, Labile methyl groups and the promotion of cancer. [Review]. Ann. Rev. Nutr. 6: 407–32.CrossRefGoogle Scholar
  22. 22.
    Pelech, S. L. and Vance, D. E., 1984, Regulation of phosphatidylcholine biosynthesis. [Review]. Biochim. Biophys. Acta. 779: 217–51.PubMedCrossRefGoogle Scholar
  23. 23.
    Schneider, W. J. and Vance, D. E., 1978, Effect of choline deficiency on the enzymes that synthesize phosphatidylcholine and phosphatidylethanolamine in rat liver. Eur. J. Biochem. 85: 181–187.PubMedCrossRefGoogle Scholar
  24. 24.
    Sheard, N. F., Tayek, J. A., Bistrian, B. R., Blackburn, G. L. and Zeisel, S. H., 1986, Plasma choline concentration in humans fed parenterally. Am. J. Clin. Nutr. 43: 219–24.PubMedGoogle Scholar
  25. 25.
    Shivapurkar, N. and Poirier, L. A., 1983, Tissue levels of S-adenosylmethionine and S-adenosylhomocysteine in rats fed methyl-deficient, amino acid-defined diets for one to five weeks. Carcinogenesis. 4: 1051–1057.PubMedCrossRefGoogle Scholar
  26. 26.
    Sleight, R. and Kent, C., 1983, Regulation of phosphatidylcholine biosynthesis in mammalian cells. I. Effects of phospholipase C treatment on phosphatidylcholine metabolism in Chinese hamster ovary cells and L.M. mouse fibroblasts. J. Biol. Chem. 258: 824–830.PubMedGoogle Scholar
  27. 27.
    Yang, E. K., Blusztajn, J. K., Pomfret, E. A. and Zeisel, S. H., 1988, Rat and human mammary tissue can synthesize choline moiety via the methylation of phosphatidylethanolamine. Biochem. J. 256: 821–8.PubMedGoogle Scholar
  28. 28.
    Yao, Z. M. and Vance, D. E., 1988, The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J. Biol. Chem. 263: 2998–3004.PubMedGoogle Scholar
  29. 29.
    Zeisel, S. H., 1981, Dietary choline: biochemistry, physiology, and pharmacology. [Review]. Ann. Rev. Nutr. 1: 95–121.CrossRefGoogle Scholar
  30. 30.
    Zeisel, S. H., 1988, “Vitamin-like” molecules. 440-452.Google Scholar
  31. 31.
    Zeisel, S. H., Char, D. and Sheard, N. F., 1986, Choline, phosphatidylcholine and sphingomyelin in human and bovine milk and infant formulas. J. Nutr. 116: 50–8.PubMedGoogle Scholar
  32. 32.
    Zeisel, S. H. and Wurtman, R. J., 1981, Developmental changes in rat blood choline concentration. Biochem. J. 198: 565–70.PubMedGoogle Scholar
  33. 33.
    Zeisel, S. H., Zola, T., daCosta, K. and Pomfret, E. A., 1989, Effect of choline deficiency on S-adenosylmethionine and methionine concentrations in rat liver. Biochem. J. 259: 725–729.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Steven H. Zeisel
    • 1
  1. 1.Nutrient Metabolism Laboratory Departments of Pathology and PediatricsBoston University School of MedicineBostonUSA

Personalised recommendations