Immunologic Analysis of the Acetylcholine Receptor

  • Jon Lindstrom


Studies of receptors have come a long way in the past decade or so. It is no longer possible to study their pharmacological or electrophysiological properties without serious consideration of their macromolecular properties. A cascade of new techniques (e.g., affinity labeling, affinity purification, reconstitution, patch clamping, monoclonal antibody production, gene cloning, in vitro gene expression, antisense mRNA) is overcoming many of the old barriers to molecular characterization of receptors (e.g., small amounts of receptor, lack of biochemical probes, lack of techniques for solubilizing, reconstituting, and characterizing receptors in membranes). In this cascade of techniques, today’s new technique (e.g., in vitro mutagenesis) frequently seems to threaten to make yesterday’s new technique (e.g., reconstitution) seem passe even before the approach can be thoroughly established and utilized. In fact, all of these techniques have virtues and limitations, and many of these techniques will be required in state-of-the-art studies of receptors. It is clear, however, that a continuance of productivity in studies of receptors will require knowledge of several of these techniques. One of the technologies that has been and will continue to be useful in studies of receptors from the initial stages of identification through purification and characterization and into studies of synthesis and the molecular basis of function is the use of antibodies.


Acetylcholine Receptor Antigenic Structure Immunologic Analysis Native Receptor Cytoplasmic Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amit, A., Mariuzza, R., Phillips, S., and Poljak, R., 1985, Three dimensional structure of an antigenantibody complex at 6Å resolution, Nature 313:156–158.PubMedCrossRefGoogle Scholar
  2. Anderson, D., and Blobel, G., 1981, In vitro synthesis, glycosylation, and membrane insertion of the four subunits of Torpedo acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 78:5598–5602.PubMedCrossRefGoogle Scholar
  3. Anderson, D., Walter, P., and Blobel, G., 1982, Signal recognition protein is required for the integration of acetylcholine receptor delta subunit, a transmembrane glycoprotein, into the endoplasmic reticulum membrane, J. Cell Biol. 93:501–506.PubMedCrossRefGoogle Scholar
  4. Anderson, D., Blobel, G., Tzartos, S., Gullick, W., and Lindstrom, J., 1983, Transmembrane orientation of an early biosynthetic form of acetylcholine receptor delta subunit determined by proteolytic dissection in conjunction with monoclonal antibodies, J. Neurosci. 3:1773–1784.PubMedGoogle Scholar
  5. Anholt, R., Lindstrom, J., and Montai, M., 1980, Functional equivalence of monomeric and dimeric forms of purified acetylcholine receptor from Torpedo californica in reconstituted lipid vesicles, Eur. J. Biochem. 109:481–187.PubMedCrossRefGoogle Scholar
  6. Anholt, R., Lindstrom, J., and Montai, M., 1981, Stabilization of acetylcholine receptor channels by lipids in cholate solution and during reconstitution in vesicles, J. Biol. Chem. 256:4377–4387.PubMedGoogle Scholar
  7. Anholt, R., Fredkin, D., Deerinck, T., Ellisman, M., Montai, M., and Lindstrom, J., 1982, Incorporation of acetylcholine receptors into liposomes: Vesicle structure and acetylcholine receptor function, J. Biol. Chem. 25:7122–7134.Google Scholar
  8. Atassi, M. Z., 1984, Antigenic structure of proteins, Eur. J. Biochem. 145:1–20.PubMedCrossRefGoogle Scholar
  9. Blatt, Y., Montai, M., Lindstrom, J., and Montai, M., 1985, Monoclonal antibodies directed against epitopes in the beta and gamma subunits of the Torpedo cholinergic receptor affect channel gating, J. Neurosci. (in press).Google Scholar
  10. Bon, F., Lebrun, E., Gomel, J., Van Rapenbusch, R., Cartand, J., Popot, J.-L., and Changeux, J.-P., 1984, Image analysis of the heavy form of the acetylcholine receptor from Torpedo marmoraia, J. Mol. Biol. 176:205–237.CrossRefGoogle Scholar
  11. Burden, S., DePalma, R., and Gottesman, G., 1983, Crosslinking of proteins in acetylcholine receptorrich membranes: Association between the beta subunit and the 43kd subunit protein, Cell 35:687–692.PubMedCrossRefGoogle Scholar
  12. Claudio, T., Ballivet, M., Patrick, J., and Heinemann, S., 1983, Torpedo californica acetylcholine receptor 60,000 dalton subunit: Nucleotide sequence of cloned cDNA deduced amino acid sequence, subunit structural predictions, Proc. Natl. Acad. Sci. U.S.A. 80:1111–1115.PubMedCrossRefGoogle Scholar
  13. Cleveland, W., Wasserman, N., Sarangarajon, R., Penn, A., and Erlanger, B., 1983, Monoclonal antibodies to the acetylcholine receptor by a normally functioning auto anti-idiotypic mechanism, Nature 305:56–57.PubMedCrossRefGoogle Scholar
  14. Conti-Tronconi, B., Tzartos, S., and Lindstrom, J., 1981, Monoclonal antibodies as probes of acetylcholine receptor structure. II: Binding to native receptor, Biochemistry 20:2181–2191.PubMedCrossRefGoogle Scholar
  15. Criado, M., Hochschwender, S., Sarin, V., Fox, J., and Lindstrom, J., 1985, Evidence for additional transmembranous domains in acetylcholine receptor subunits, Proc. Natl. Acad. Sci. U.S.A. 82:2004–2008.PubMedCrossRefGoogle Scholar
  16. Dennis, M., Ziskind-Conhaim, L., and Harris, A., 1981, Development of neuromuscular junctions in rat embryos, Dev. Biol. 81:266–279.PubMedCrossRefGoogle Scholar
  17. Devillers-Thiery, A., Giraudat, J., Bentaboulet, M., and Changeux, J.-P., 1983, Complete mRNA coding sequence of the acetylcholine binding alpha subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain, Proc. Natl. Acad. Sci. U.S.A. 80:2067–2071.PubMedCrossRefGoogle Scholar
  18. Donnelly, D., Mihovilovic, M., Gozalez-Ros, J., Ferragut, J., Richman, D., and Martinez-Carrion, M., 1984, A noncholinergic site-directed monoclonal antibody can impair agonist-induced ion flux in Torpedo californica acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 81:7999–8003.PubMedCrossRefGoogle Scholar
  19. Dwyer, D., Bradley, R., Urquhart, C., and Kearney, J., 1983, An enzyme-linked immunosorbent assay for measuring antibodies muscle acetylcholine receptor, J. Immunol. Methods 57:111–119.PubMedCrossRefGoogle Scholar
  20. EMBO-SKMB, 1980, Hybridoma Techniques, Cold Spring Harbor Laboratories, New York.Google Scholar
  21. Fambrough, D., and Devreotes, P., 1978, Newly synthesized acetylcholine receptors are located in the Golgi apparatus, J. Cell Biol. 76:237–244.PubMedCrossRefGoogle Scholar
  22. Finer-Moore, J., and Stroud, R., 1984, Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 81:155–159.PubMedCrossRefGoogle Scholar
  23. Fraser, C., and Veuter, J., 1980, Monoclonal antibodies to β adrenergic receptors: Use in purification and molecular characterization of β receptors, Proc. Natl. Acad. Sci. U.S.A. 77:7034–7038.PubMedCrossRefGoogle Scholar
  24. Fraser, C., and Lindstrom, J., 1985, The use of monoclonal antibodies in receptor characterization and purification, in: Receptor Biochemistry and Methodology, Vol. 3 (C. Venter and L. Harrison, eds.), Alan R. Liss, New York (in press).Google Scholar
  25. Froehner, S., Douville, K., Klink, S., and Culp, W., 1983, Monoclonal antibodies to cytoplasmic domains of the acetylcholine receptor, J. Biol. Chem. 258:7112–7120.PubMedGoogle Scholar
  26. Gershoni, J., and Palade, G., 1983, Protein blotting: Principles and applications, Anal. Biochem. 131:1–15.PubMedCrossRefGoogle Scholar
  27. Gomez, C., and Richman, D., 1983, Anti-acetylcholine receptor antibodies directed against the alpha bungarotoxin binding site induce a unique form of experimental myasthenia, Proc. Natl. Acad. Sci. U.S.A. 80:4089–4093.PubMedCrossRefGoogle Scholar
  28. Gomez, C., Richman, D., Burres, S., and Arnason, B., 1981, Monoclonal hybridoma anti-acetylcholine receptor antibodies: Antibody specificity and effect of passive transfer, Ann. N.Y. Acad. Sci. 377:97–109.PubMedCrossRefGoogle Scholar
  29. Gordon, A., Milfay, D., and Diamond, I., 1983, Identification of a molecular weight 43,000 protein kinase in acetylcholine receptor-enriched membranes, Proc. Natl. Acad. Sci. U.S.A. 80:5862–5865.PubMedCrossRefGoogle Scholar
  30. Gullick, W., and Lindstrom, J., 1983a, Comparison of the subunit structure of acetylcholine receptors from muscle and electric organ of Electrophorus electricus, Biochemistry 22:3801–3807.Google Scholar
  31. Gullick, W., and Lindstrom, J., 1983b, Mapping the binding of monoclonal antibodies to the acetylcholine receptor from Torpedo californica, Biochemistry 22:3312–3320.CrossRefGoogle Scholar
  32. Gullick, W., Tzartos, S., and Lindstrom, J., 1981, Monoclonal antibodies as probes of acetylcholine receptor structure. I: Peptide mapping, Biochemistry 20:2173–2180.PubMedCrossRefGoogle Scholar
  33. Guy, R., 1983, A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations, Biophys. J. 45:249–261.CrossRefGoogle Scholar
  34. Hall, Z., Roisin, M., Gu, Y., and Gorin, P., 1983, A developmental change in the immunological properties of acetylcholine receptors at the rat neuromuscular junction, Cold Spring Harbor Symp. Quant. Biol. 48:101–108.PubMedCrossRefGoogle Scholar
  35. Hartig, P., and Raftery, M., 1979, Preparation of right side out, acetylcholine receptor enriched intact vesicles from Torpedo californica electroplaque membranes, Biochemistry 18:1146–1150.PubMedCrossRefGoogle Scholar
  36. Heidmann, T., and Changeux, J.-P., 1984, Time resolved photolabeling by the noncompetitive blocker chlorpromazine of the acetylcholine receptor in its transiently open and closed ion channel conformations, Proc. Natl. Acad. Sci. U.S.A. 81:1897–1901.PubMedCrossRefGoogle Scholar
  37. Heinemann, S., Bevan, S., Kuliberg, R., Lindstrom, J., and Rice, J., 1977, Modulation of the acetylcholine receptor by anti-receptor antibody, Proc. Natl. Acad. Sci. U.S.A. 74:3090–3094.PubMedCrossRefGoogle Scholar
  38. Hochschwender, S., Langeberg, L., Schneider, D., and Lindstrom, J., 1985, Exploring the structure of the acetylcholine receptor, in: Hybridoma Technology in the Biosciences and Medicine (T. Springer, ed.), pp. 223-238, Plenum Press, New York.Google Scholar
  39. Hopp, T., and Woods, K., 1981, Prediction of protein antigenic determinants from amino acid sequences, Proc. Natl. Acad. Sci. U.S.A. 78:3824–3828.PubMedCrossRefGoogle Scholar
  40. Jacob, M. Berg, D., and Lindstrom, J., 1984, A shared antigenic determinant between the Electrophorus acetylcholine receptor and a synaptic component on chick ciliary ganglion neurons, Proc. Natl. Acad. Sci. U.S.A. 81:3223–3227.PubMedCrossRefGoogle Scholar
  41. James, R., Kato, A., Rey, M., and Fulpius, B., 1980, Monoclonal antibodies directed against the neurotransmitter binding site of nicotinic acetylcholine receptor, FEBS Lett. 120:145-148.Google Scholar
  42. Juillerat, M., Barkas, T., and Tzartos, S., 1984, Antigenic sites of the nicotinic acetylcholine receptor cannot be predicted from the hydrophotocity profile, FEBS Lett. 168:143-148.Google Scholar
  43. Kahn, C., Kasuga, M., King, G., and Grunfeld, C., 1982, Autoantibodies to insulin receptors in man: Immunological determinants and mechanisms of action, Ciba Found. Symp. 90:91–104.PubMedGoogle Scholar
  44. Kao, P., Swork, A., Kaldany, R., Silver, M., Wideman, J., Stein, S., and Karlin, A., 1984, Identification of the alpha subunit half cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site, J. Biol. Chem. 259:11662–11665.PubMedGoogle Scholar
  45. Karlin, A., McNamee, M., Weill, C., and Valderrama, R., 1976, Methods of isolation and characterization of the acetylcholine receptor, in: Methods in Receptor Research (M. Blecher, ed.), pp. 1-35, Marcel Dekker, New York.Google Scholar
  46. Karlin, A., Cox, R., Kaldany, R.-R., Lobel, P., and Holtzman, E., 1983, The arrangement and functions of the chains of the acetylcholine receptor of Torpedo electric tissue, Cold Spring Harbor Symp. Quant. Biol. 48:1–8.PubMedCrossRefGoogle Scholar
  47. Kistler, J., Stroud, R., Klymkowsky, M., Lalancette, R., and Fairclough, R., 1982, Structure and function of an acetylcholine receptor, Biophys. J. 37:371–383.PubMedCrossRefGoogle Scholar
  48. Kobayashi, N., Sugita, H., Terada, E., Ghoda, A., Okudaira, H., Ogita, T., and Miyamoto, T., 1984, A solid phase enzyme immunoassay for anti-acetylcholine receptor antibody in myasthenia gravis patients, J. Immunol. Meth. 73:267–272.CrossRefGoogle Scholar
  49. Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256:495–497.PubMedCrossRefGoogle Scholar
  50. La Rochelle, W., Wray, B., Sealock, R., and Froehner, S. 1985, Immunochemical demonstration that amino acids 360-377 of the acetylcholine receptor gamma subunit are cytoplasmic, J. Cell. Biol. 100:684–691.CrossRefGoogle Scholar
  51. Lewis, C., and Stevens, C., 1983, Acetylcholine receptor channel ionic selectivity: Ions experience an aqueous environment, Proc. Natl. Acad. Sci. U.S.A. 80:6110–6113.PubMedCrossRefGoogle Scholar
  52. Lindstrom, J., 1984, Use of monoclonal antibodies in the study of myasthenia gravis, in: Monoclonal Antibodies: Probes for the Study of Autoimmunity and Immunodeficiency (G. Eisenbarth and B. Haynes, eds.), pp. 259–296, Academic Press, New York.Google Scholar
  53. Lindstrom, J., 1985a, Nicotinic acetylcholine receptors: Use of monoclonal antibodies to study synthesis, structure, function, and autoimmune response, in: Receptor Biochemistry and Methodology. Vol. IV (J. Venter, C. Fraser, and J. Lindstrom, eds.), pp. 21–57, Alan R. Liss, New York.Google Scholar
  54. Lindstrom, J., 1985b, Techniques for studying the biochemistry and cell biology of receptors, in: Neurotransmitter Receptor Binding, (H. Yamamura, S. Enna, and M. Kuhar, eds.), pp. 123–152, Raven Press, New York.Google Scholar
  55. Lindstrom, J., Einarson, B., and Merlie, J., 1978, Immunization of rats with polypeptide chains from Torpedo acetylcholine receptor causes an autoimmune response to receptors in rat muscle, Proc. Natl. Acad. Sci. U.S.A. 75:769–773.PubMedCrossRefGoogle Scholar
  56. Lindstrom, J., Merlie, J., and Yogeeswaran, B., 1979a, Biochemical properties of acetylcholine receptor subunits from Torpedo californica, Biochemistry 18:4465–4470.CrossRefGoogle Scholar
  57. Lindstrom, J., Walter, B., and Einarson, B., 1979b, Immunochemical similarities between subunits of acetylcholine receptors from Torpedo, Electrophorus, and mammalian muscle, Biochemistry 18:4470–4480.PubMedCrossRefGoogle Scholar
  58. Lindstrom, J., Anholt, R., Einarson, B., Engel, A., Osame, M., and Montai, M., 1980a, Purification of acetylcholine receptors with functional cation channels and reconstitution into lipid vesicles, J. Biol. Chem. 255:8340–8350.PubMedGoogle Scholar
  59. Lindstrom, J., Gullick, W., Conti-Tronconi, B. and Ellisman, M., 1980b, Proteolytic nicking of the acetylcholine receptor, Biochemistry 19:4791–4795.PubMedCrossRefGoogle Scholar
  60. Lindstrom, J., Einarson, B., and Tzartos, S., 1981a, Production and assay of antibodies to acetylcholine receptors, Methods. Enzymol. 74:432–460.PubMedCrossRefGoogle Scholar
  61. Lindstrom, J., Tzartos, S., and Gullick, B., 1981b, Structure and function of acetylcholine receptors studied using monoclonal antibodies, Ann. N.Y. Acad. Sci. 377:1–19.PubMedCrossRefGoogle Scholar
  62. Lindstrom, J., Tzartos, S., Gullick, W., Hochschwender, S., Swanson, L., Sargent, P., Jacob, M., and Montai, M., 1983a, Use of monoclonal antibodies to study acetylcholine receptors from electric organs, muscle, and brain and the autoimmune response to receptor in myasthenia gravis, Cold Spring Harbor Symp. Quant. Biol. 48:89–99.PubMedCrossRefGoogle Scholar
  63. Lindstrom, J., Cooper, J., and Swanson, L., 1983b, Purification of acetylcholine receptors from the muscles of Electrophorus electricus, Biochemistry 22:3796–3800.Google Scholar
  64. Lindstrom, J., Criado, M., Hochschwender, S., Fox, L., and Sarin, V., 1984, Immunochemical tests of acetylcholine receptor subunit models, Nature 311:573–575.PubMedCrossRefGoogle Scholar
  65. Luyten, W., Kallaris, K., Kyte, J., Heinemann, S., and Patrick, J., 1984, A model for the acetylcholine binding site of the acetylcholine receptor, Neurosci. Soc. Abstr. 212:10.Google Scholar
  66. McCormick, D., and Atassi, M., 1984, Localization and synthesis of the acetylcholine binding site in the alpha chain of the Torpedo californica acetylcholine receptor, Biochem. J. 224:995–1000.PubMedGoogle Scholar
  67. Merlie, P., and Lindstrom, J., 1983, Assembly in vivo of mouse muscle acetylcholine receptor: Identification of an alpha subunit species which may be an assembly intermediate, Cell 34:747–757.PubMedCrossRefGoogle Scholar
  68. Merlie, J., Sebbane, R., Tzartos, S., and Lindstrom, J., 1982, Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle cells, J. Biol. Chem. 257:2694–2701.PubMedGoogle Scholar
  69. Merlie, J., Sebbane, R., Gardner, S., and Lindstrom, J., 1983a, Regulation of acetylcholine receptor gene expression: Molecular cloning of a cDNA specific for alpha subunit of the receptor from the mouse muscle cell line BC3H-1, Proc. Natl. Acad. Sci. U.S.A. 80:3845–3849.PubMedCrossRefGoogle Scholar
  70. Merlie, J., Sebbane, R., Gardner, S., Olson, E., and Lindstrom, J., 1983b, The regulation of acetylcholine receptor expression in mammalian muscle, Cold Spring Harbor Symp. Quant. Biol. 48:135–146.PubMedCrossRefGoogle Scholar
  71. Merlie, J., Isenberg, K., Russell, S., and Sanes, J., 1984, Denervation supersensitivity in skeletal muscle: Analysis with a cloned cDNA probe, J. Cell Biol. 99:332–335.PubMedCrossRefGoogle Scholar
  72. Mihovilovic, M., and Richman, D., 1984, Modification of alpha bungarotoxin and cholinergic ligand binding properties of Torpedo acetylcholine receptor by a monoclonal anti-acetylcholine receptor antibody, J. Biol Chem. 259:15051–15059.PubMedGoogle Scholar
  73. Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M., and Numa, S., 1984, Expression of functional acetylcholine receptor from cloned cDNAs, Nature 307:604–608.PubMedCrossRefGoogle Scholar
  74. Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K., Fujita, Y., Fukuda K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M., and Numa, S., 1985, Location of functional regions of acetylcholine receptor alpha subunit by site-directed mutagenesis, Nature 313:364–369.PubMedCrossRefGoogle Scholar
  75. Mochley-Rosen, C., and Fuchs, S., 1981, Monoclonal anti-acetylcholine receptor antibodies directed against the cholinergic binding site, Biochemistry 20:5920–5924.CrossRefGoogle Scholar
  76. Neumann, D., Fridkin, M., and Fuchs, S., 1984, Anti-acetylcholine receptor response achieved by immunization with a synthetic peptide from the receptor sequence, Biochim. Biophys. Res. Commun. 121:673–679.CrossRefGoogle Scholar
  77. Nitkin, R., Wallace, B., Spira, M., Godfrey, E., and McMahan, V., 1983, Molecular components of the synaptic basal lamina that direct differentiation of regenerating neuromuscular junctions, Cold Spring Harbor Symp. Quant. Biol. 48:653–666.PubMedCrossRefGoogle Scholar
  78. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T., and Numa, S., 1982, Primary structure of alpha subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence, Nature 299:793–797.PubMedCrossRefGoogle Scholar
  79. Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotani, S., Kanayo, T., Hirose, T., Inayama, S., and Numa, S., 1983a, Cloning and sequence analysis of calf cDNA and human genomic DNA encoding alpha subunit precursor of muscle acetylcholine receptor, Nature 305:818–823.PubMedCrossRefGoogle Scholar
  80. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Tak-ashima, H., Inayama, S., Miyata, T., and Numa, S., 1983b, Structural homology of Torpedo calif ornica acetylcholine receptor subunits, Nature 302:528–532.PubMedCrossRefGoogle Scholar
  81. Numa, S., Noda, M. Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., and Kykyotani, S., 1983, Molecular structure of the nicotinic acetylcholine receptor, Cold Spring Harbor Symp. Quant. Biol. 48:57–71.PubMedCrossRefGoogle Scholar
  82. Olson, E., Glaser, L., Merlie, J., Sebbane, R., and Lindstrom, J., 1983a, Regulation of surface expression of acetylcholine receptors in response to serum and cell growth in the BC3H1 muscle cell line, J. Biol. Chem. 258:13946–13953.PubMedGoogle Scholar
  83. Olson, E., Glaser, L., Merlie, J., and Lindstrom, J., 1983b, Expression of acetylcholine receptor alpha subunit mRNA during differentiation of the BC3H1 muscle cell lines, J. Biol. Chem. 259:3330–3336.Google Scholar
  84. Olson, E., Glaser, L., and Merlie, J., 1984, Alpha and beta subunits of the nicotinic acetylcholine receptor contain covalently bound lipid, J. Biol. Chem. 259:5364–5367.PubMedGoogle Scholar
  85. Palfreyman, J., Aitcheson, T., and Taylor, P., 1984, Guidelines for the production of polypeptide specific antisera using small synthetic oligopeptides as immunogens, J. Immunol. Methods. 75:383–393.PubMedCrossRefGoogle Scholar
  86. Patrick, J., and Lindstrom, J., 1973, Autoimmune response to acetylcholine receptor, Science 180:871–872.PubMedCrossRefGoogle Scholar
  87. Plumer, R., Fels, G., and Maelicke, A., 1984, Antibodies against preselected peptide to map functional sites on the acetylcholine receptor, FEBS Lett. 178:204–208.PubMedCrossRefGoogle Scholar
  88. Pumplin, D., and Fambrough, D., 1982, Turnover of acetylcholine receptors in skeletal muscle, Anna. Rev. Physiol. 44:319–335.CrossRefGoogle Scholar
  89. Raftery, M., Hunkapillar, M., Strader, D., and Hood, L., 1980, Acetylcholine receptor: Complex of homologous subunits, Science 208:1454–1457.PubMedCrossRefGoogle Scholar
  90. Ratnam, M., and Lindstrom, J., 1984, Structural features of the nicotinic acetylcholine receptor revealed by antibodies to synthetic peptides, Biochem. Biophys. Res. Commun. 122:1225–1233.PubMedCrossRefGoogle Scholar
  91. Rees-Smith, B., and Buckland, P., 1982, Structure function relations of the thyrotropin receptor, Ciba Found. Symp. 90:114–125.Google Scholar
  92. Reynolds, J., and Karlin, A., 1978, Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica, Biochemistry 17:2035–2038.CrossRefGoogle Scholar
  93. Salpeter, M., and Harris, M., 1983, Distribution and turnover rate of acetylcholine receptors throughout the junction folds at a vertebrate neuromuscular junction, J. Cell Biol. 96:1781–1785.PubMedCrossRefGoogle Scholar
  94. Sargent, P., Hedges, B., Tsavaler, L., Clemmons, L., Tzartos, S., and Lindstrom, J., 1983, The structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscles revealed by crossreacting monoclonal antibodies, J. Cell Biol. 98:609–618.CrossRefGoogle Scholar
  95. Sealock, R., Wray, B., and Froehner, S., 1984, Ultrastructural localization of the M r 43,000 protein and the acetylcholine receptor in Torpedo postsynaptic membranes using monoclonal antibodies, J. Cell Biol. 98:2239–2244.PubMedCrossRefGoogle Scholar
  96. Seed, B., 1982, Diazotizable arylamine cellulose papers for the coupling and hybridization of nucleic acids, Nucleic Acids. Res. 10:1799–1810.PubMedCrossRefGoogle Scholar
  97. Takai, T., Noda, M., Furutani, Y., Takahashi, H., Notake, M., Shimizu, S., Kayano, T., Tanabe, T., Tanaka, K., Hirose, T., Inayama, S., and Numa, S., 1984, Primary structure of gamma subunit precursor of calf-muscle acetylcholine receptor deduced from the cDNA sequence, Eur. J. Biochem. 143:109–115.PubMedCrossRefGoogle Scholar
  98. Tanabe, T., Noda, M., Furutani, Y., Takai, T., Takahashi, H., Tanaka, K., Hirose, T., Inayama, S., and Numa, S., 1984, Primary structure of beta subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence, Eur. J. Biochem. 144:11–17.PubMedCrossRefGoogle Scholar
  99. Towbin, H., and Gordon, J., 1984, Immunoblotting and dot immunobinding: Current status and outlook, J. Immunol. Methods 72:313–340.PubMedCrossRefGoogle Scholar
  100. Tzartos, S., and Lindstrom, J., 1980, Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits, Proc. Natl. Acad. Sci. U.S.A. 77:755–759.PubMedCrossRefGoogle Scholar
  101. Tzartos, S., Rand, D., Einarson, B., and Lindstrom, J., 1981, Mapping of surface structures on Electrophorus acetylcholine receptor using monoclonal antibodies, J. Biol. Chem. 256:8635–8645.PubMedGoogle Scholar
  102. Tzartos, S., Seybold, M., and Lindstrom, J., 1982, Specificity of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies, Proc. Natl, Acad. Sci. U.S.A. 79:188–192.CrossRefGoogle Scholar
  103. Tzartos, S., Langeberg, L., Hochschwender, S., and Lindstrom, J., 1983, Demonstration of a main immunogenic region on acetylcholine receptors from human muscle using monoclonal antibodies to human receptor, FEBS Lett. 158:116–118.PubMedCrossRefGoogle Scholar
  104. Vandlen, R., Wilson, C., Eisenach, J., and Raftery, M., 1979, Studies of the composition of purified Torpedo californica acetylcholine receptor and its subunits, Biochemistry 18:1845–1854.PubMedCrossRefGoogle Scholar
  105. Venter, C., and Harrison, L. (eds.), 1984, Receptor Biochemistry and Methodology, Vol. 2, Receptor Purification Procedures, Alan R. Liss, New York.Google Scholar
  106. Venter, C., Fraser, C., and Lindstrom, J. (eds.), 1984, Receptor Biochemistry and Methodology, Vol. 4, Monoclonal and Anti-idiotypic Antibodies: Probes for Receptor Structure and Function, Alan R. Liss, New York.Google Scholar
  107. Walker, J. Boustead, C., and Witzemann, V., 1984, The 43K protein, V1, associated with acetylcholine receptor containing membrane fragments is an actin-binding protein, EMBO J. 3:2287–2290.PubMedGoogle Scholar
  108. Wan, K., and Lindstrom, J., 1985, Effects of monoclonal antibodies on the function of acetylcholine receptors purified from Torpedo californica reconstituted into vesicles, Biochemistry, 24:1212-1221.Google Scholar
  109. Watters, D., and Maelicke, A., 1983, Organization of ligand binding sites at the acetylcholine receptor: A study with monoclonal antibodies, Biochemistry 22:1811–1819.PubMedCrossRefGoogle Scholar
  110. Wilson, I., Niman, H., Houghton, R., Cherenson, A., Connolly, M., and Lerner, R., 1984, The structure of an antigenic determinant of a protein, Cell 37:767–778.PubMedCrossRefGoogle Scholar
  111. Young, R., and Davis, R., 1983, Efficient isolation of genes by using antibody probes, Proc. Natl. Acad. Sci. U.S.A. 80:1194–1198.PubMedCrossRefGoogle Scholar
  112. Young, C., Schmitz, H., and Atassi, M., 1983, Antibodies with preselected specificities to protein regions evoked by immunization with free synthetic peptides, Immunol. Commun. 12:419–428.PubMedGoogle Scholar
  113. Young, E., Ralston, E., Blake, J., Ramachandran, J., Hall, Z., and Stroud, R., 1985, Topological mapping of acetylcholine receptor: Evidence for a model with five transmembrane segments and a cytoplasmic COOH-terminal peptide, Proc. Natl. Acad. Sci. U.S.A. 82:626–630.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Jon Lindstrom
    • 1
  1. 1.The Salk InstituteSan DiegoUSA

Personalised recommendations