Skip to main content

Immunologic Analysis of the Acetylcholine Receptor

  • Chapter
Ion Channel Reconstitution

Abstract

Studies of receptors have come a long way in the past decade or so. It is no longer possible to study their pharmacological or electrophysiological properties without serious consideration of their macromolecular properties. A cascade of new techniques (e.g., affinity labeling, affinity purification, reconstitution, patch clamping, monoclonal antibody production, gene cloning, in vitro gene expression, antisense mRNA) is overcoming many of the old barriers to molecular characterization of receptors (e.g., small amounts of receptor, lack of biochemical probes, lack of techniques for solubilizing, reconstituting, and characterizing receptors in membranes). In this cascade of techniques, today’s new technique (e.g., in vitro mutagenesis) frequently seems to threaten to make yesterday’s new technique (e.g., reconstitution) seem passe even before the approach can be thoroughly established and utilized. In fact, all of these techniques have virtues and limitations, and many of these techniques will be required in state-of-the-art studies of receptors. It is clear, however, that a continuance of productivity in studies of receptors will require knowledge of several of these techniques. One of the technologies that has been and will continue to be useful in studies of receptors from the initial stages of identification through purification and characterization and into studies of synthesis and the molecular basis of function is the use of antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amit, A., Mariuzza, R., Phillips, S., and Poljak, R., 1985, Three dimensional structure of an antigenantibody complex at 6Å resolution, Nature 313:156–158.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, D., and Blobel, G., 1981, In vitro synthesis, glycosylation, and membrane insertion of the four subunits of Torpedo acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 78:5598–5602.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, D., Walter, P., and Blobel, G., 1982, Signal recognition protein is required for the integration of acetylcholine receptor delta subunit, a transmembrane glycoprotein, into the endoplasmic reticulum membrane, J. Cell Biol. 93:501–506.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, D., Blobel, G., Tzartos, S., Gullick, W., and Lindstrom, J., 1983, Transmembrane orientation of an early biosynthetic form of acetylcholine receptor delta subunit determined by proteolytic dissection in conjunction with monoclonal antibodies, J. Neurosci. 3:1773–1784.

    PubMed  CAS  Google Scholar 

  • Anholt, R., Lindstrom, J., and Montai, M., 1980, Functional equivalence of monomeric and dimeric forms of purified acetylcholine receptor from Torpedo californica in reconstituted lipid vesicles, Eur. J. Biochem. 109:481–187.

    Article  PubMed  CAS  Google Scholar 

  • Anholt, R., Lindstrom, J., and Montai, M., 1981, Stabilization of acetylcholine receptor channels by lipids in cholate solution and during reconstitution in vesicles, J. Biol. Chem. 256:4377–4387.

    PubMed  CAS  Google Scholar 

  • Anholt, R., Fredkin, D., Deerinck, T., Ellisman, M., Montai, M., and Lindstrom, J., 1982, Incorporation of acetylcholine receptors into liposomes: Vesicle structure and acetylcholine receptor function, J. Biol. Chem. 25:7122–7134.

    Google Scholar 

  • Atassi, M. Z., 1984, Antigenic structure of proteins, Eur. J. Biochem. 145:1–20.

    Article  PubMed  CAS  Google Scholar 

  • Blatt, Y., Montai, M., Lindstrom, J., and Montai, M., 1985, Monoclonal antibodies directed against epitopes in the beta and gamma subunits of the Torpedo cholinergic receptor affect channel gating, J. Neurosci. (in press).

    Google Scholar 

  • Bon, F., Lebrun, E., Gomel, J., Van Rapenbusch, R., Cartand, J., Popot, J.-L., and Changeux, J.-P., 1984, Image analysis of the heavy form of the acetylcholine receptor from Torpedo marmoraia, J. Mol. Biol. 176:205–237.

    Article  CAS  Google Scholar 

  • Burden, S., DePalma, R., and Gottesman, G., 1983, Crosslinking of proteins in acetylcholine receptorrich membranes: Association between the beta subunit and the 43kd subunit protein, Cell 35:687–692.

    Article  PubMed  CAS  Google Scholar 

  • Claudio, T., Ballivet, M., Patrick, J., and Heinemann, S., 1983, Torpedo californica acetylcholine receptor 60,000 dalton subunit: Nucleotide sequence of cloned cDNA deduced amino acid sequence, subunit structural predictions, Proc. Natl. Acad. Sci. U.S.A. 80:1111–1115.

    Article  PubMed  CAS  Google Scholar 

  • Cleveland, W., Wasserman, N., Sarangarajon, R., Penn, A., and Erlanger, B., 1983, Monoclonal antibodies to the acetylcholine receptor by a normally functioning auto anti-idiotypic mechanism, Nature 305:56–57.

    Article  PubMed  CAS  Google Scholar 

  • Conti-Tronconi, B., Tzartos, S., and Lindstrom, J., 1981, Monoclonal antibodies as probes of acetylcholine receptor structure. II: Binding to native receptor, Biochemistry 20:2181–2191.

    Article  PubMed  CAS  Google Scholar 

  • Criado, M., Hochschwender, S., Sarin, V., Fox, J., and Lindstrom, J., 1985, Evidence for additional transmembranous domains in acetylcholine receptor subunits, Proc. Natl. Acad. Sci. U.S.A. 82:2004–2008.

    Article  PubMed  CAS  Google Scholar 

  • Dennis, M., Ziskind-Conhaim, L., and Harris, A., 1981, Development of neuromuscular junctions in rat embryos, Dev. Biol. 81:266–279.

    Article  PubMed  CAS  Google Scholar 

  • Devillers-Thiery, A., Giraudat, J., Bentaboulet, M., and Changeux, J.-P., 1983, Complete mRNA coding sequence of the acetylcholine binding alpha subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain, Proc. Natl. Acad. Sci. U.S.A. 80:2067–2071.

    Article  PubMed  CAS  Google Scholar 

  • Donnelly, D., Mihovilovic, M., Gozalez-Ros, J., Ferragut, J., Richman, D., and Martinez-Carrion, M., 1984, A noncholinergic site-directed monoclonal antibody can impair agonist-induced ion flux in Torpedo californica acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 81:7999–8003.

    Article  PubMed  CAS  Google Scholar 

  • Dwyer, D., Bradley, R., Urquhart, C., and Kearney, J., 1983, An enzyme-linked immunosorbent assay for measuring antibodies muscle acetylcholine receptor, J. Immunol. Methods 57:111–119.

    Article  PubMed  CAS  Google Scholar 

  • EMBO-SKMB, 1980, Hybridoma Techniques, Cold Spring Harbor Laboratories, New York.

    Google Scholar 

  • Fambrough, D., and Devreotes, P., 1978, Newly synthesized acetylcholine receptors are located in the Golgi apparatus, J. Cell Biol. 76:237–244.

    Article  PubMed  CAS  Google Scholar 

  • Finer-Moore, J., and Stroud, R., 1984, Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 81:155–159.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, C., and Veuter, J., 1980, Monoclonal antibodies to β adrenergic receptors: Use in purification and molecular characterization of β receptors, Proc. Natl. Acad. Sci. U.S.A. 77:7034–7038.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, C., and Lindstrom, J., 1985, The use of monoclonal antibodies in receptor characterization and purification, in: Receptor Biochemistry and Methodology, Vol. 3 (C. Venter and L. Harrison, eds.), Alan R. Liss, New York (in press).

    Google Scholar 

  • Froehner, S., Douville, K., Klink, S., and Culp, W., 1983, Monoclonal antibodies to cytoplasmic domains of the acetylcholine receptor, J. Biol. Chem. 258:7112–7120.

    PubMed  CAS  Google Scholar 

  • Gershoni, J., and Palade, G., 1983, Protein blotting: Principles and applications, Anal. Biochem. 131:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Gomez, C., and Richman, D., 1983, Anti-acetylcholine receptor antibodies directed against the alpha bungarotoxin binding site induce a unique form of experimental myasthenia, Proc. Natl. Acad. Sci. U.S.A. 80:4089–4093.

    Article  PubMed  CAS  Google Scholar 

  • Gomez, C., Richman, D., Burres, S., and Arnason, B., 1981, Monoclonal hybridoma anti-acetylcholine receptor antibodies: Antibody specificity and effect of passive transfer, Ann. N.Y. Acad. Sci. 377:97–109.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, A., Milfay, D., and Diamond, I., 1983, Identification of a molecular weight 43,000 protein kinase in acetylcholine receptor-enriched membranes, Proc. Natl. Acad. Sci. U.S.A. 80:5862–5865.

    Article  PubMed  CAS  Google Scholar 

  • Gullick, W., and Lindstrom, J., 1983a, Comparison of the subunit structure of acetylcholine receptors from muscle and electric organ of Electrophorus electricus, Biochemistry 22:3801–3807.

    CAS  Google Scholar 

  • Gullick, W., and Lindstrom, J., 1983b, Mapping the binding of monoclonal antibodies to the acetylcholine receptor from Torpedo californica, Biochemistry 22:3312–3320.

    Article  CAS  Google Scholar 

  • Gullick, W., Tzartos, S., and Lindstrom, J., 1981, Monoclonal antibodies as probes of acetylcholine receptor structure. I: Peptide mapping, Biochemistry 20:2173–2180.

    Article  PubMed  CAS  Google Scholar 

  • Guy, R., 1983, A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations, Biophys. J. 45:249–261.

    Article  Google Scholar 

  • Hall, Z., Roisin, M., Gu, Y., and Gorin, P., 1983, A developmental change in the immunological properties of acetylcholine receptors at the rat neuromuscular junction, Cold Spring Harbor Symp. Quant. Biol. 48:101–108.

    Article  PubMed  CAS  Google Scholar 

  • Hartig, P., and Raftery, M., 1979, Preparation of right side out, acetylcholine receptor enriched intact vesicles from Torpedo californica electroplaque membranes, Biochemistry 18:1146–1150.

    Article  PubMed  CAS  Google Scholar 

  • Heidmann, T., and Changeux, J.-P., 1984, Time resolved photolabeling by the noncompetitive blocker chlorpromazine of the acetylcholine receptor in its transiently open and closed ion channel conformations, Proc. Natl. Acad. Sci. U.S.A. 81:1897–1901.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann, S., Bevan, S., Kuliberg, R., Lindstrom, J., and Rice, J., 1977, Modulation of the acetylcholine receptor by anti-receptor antibody, Proc. Natl. Acad. Sci. U.S.A. 74:3090–3094.

    Article  PubMed  CAS  Google Scholar 

  • Hochschwender, S., Langeberg, L., Schneider, D., and Lindstrom, J., 1985, Exploring the structure of the acetylcholine receptor, in: Hybridoma Technology in the Biosciences and Medicine (T. Springer, ed.), pp. 223-238, Plenum Press, New York.

    Google Scholar 

  • Hopp, T., and Woods, K., 1981, Prediction of protein antigenic determinants from amino acid sequences, Proc. Natl. Acad. Sci. U.S.A. 78:3824–3828.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, M. Berg, D., and Lindstrom, J., 1984, A shared antigenic determinant between the Electrophorus acetylcholine receptor and a synaptic component on chick ciliary ganglion neurons, Proc. Natl. Acad. Sci. U.S.A. 81:3223–3227.

    Article  PubMed  CAS  Google Scholar 

  • James, R., Kato, A., Rey, M., and Fulpius, B., 1980, Monoclonal antibodies directed against the neurotransmitter binding site of nicotinic acetylcholine receptor, FEBS Lett. 120:145-148.

    Google Scholar 

  • Juillerat, M., Barkas, T., and Tzartos, S., 1984, Antigenic sites of the nicotinic acetylcholine receptor cannot be predicted from the hydrophotocity profile, FEBS Lett. 168:143-148.

    Google Scholar 

  • Kahn, C., Kasuga, M., King, G., and Grunfeld, C., 1982, Autoantibodies to insulin receptors in man: Immunological determinants and mechanisms of action, Ciba Found. Symp. 90:91–104.

    PubMed  CAS  Google Scholar 

  • Kao, P., Swork, A., Kaldany, R., Silver, M., Wideman, J., Stein, S., and Karlin, A., 1984, Identification of the alpha subunit half cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site, J. Biol. Chem. 259:11662–11665.

    PubMed  CAS  Google Scholar 

  • Karlin, A., McNamee, M., Weill, C., and Valderrama, R., 1976, Methods of isolation and characterization of the acetylcholine receptor, in: Methods in Receptor Research (M. Blecher, ed.), pp. 1-35, Marcel Dekker, New York.

    Google Scholar 

  • Karlin, A., Cox, R., Kaldany, R.-R., Lobel, P., and Holtzman, E., 1983, The arrangement and functions of the chains of the acetylcholine receptor of Torpedo electric tissue, Cold Spring Harbor Symp. Quant. Biol. 48:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Kistler, J., Stroud, R., Klymkowsky, M., Lalancette, R., and Fairclough, R., 1982, Structure and function of an acetylcholine receptor, Biophys. J. 37:371–383.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, N., Sugita, H., Terada, E., Ghoda, A., Okudaira, H., Ogita, T., and Miyamoto, T., 1984, A solid phase enzyme immunoassay for anti-acetylcholine receptor antibody in myasthenia gravis patients, J. Immunol. Meth. 73:267–272.

    Article  CAS  Google Scholar 

  • Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256:495–497.

    Article  PubMed  Google Scholar 

  • La Rochelle, W., Wray, B., Sealock, R., and Froehner, S. 1985, Immunochemical demonstration that amino acids 360-377 of the acetylcholine receptor gamma subunit are cytoplasmic, J. Cell. Biol. 100:684–691.

    Article  Google Scholar 

  • Lewis, C., and Stevens, C., 1983, Acetylcholine receptor channel ionic selectivity: Ions experience an aqueous environment, Proc. Natl. Acad. Sci. U.S.A. 80:6110–6113.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom, J., 1984, Use of monoclonal antibodies in the study of myasthenia gravis, in: Monoclonal Antibodies: Probes for the Study of Autoimmunity and Immunodeficiency (G. Eisenbarth and B. Haynes, eds.), pp. 259–296, Academic Press, New York.

    Google Scholar 

  • Lindstrom, J., 1985a, Nicotinic acetylcholine receptors: Use of monoclonal antibodies to study synthesis, structure, function, and autoimmune response, in: Receptor Biochemistry and Methodology. Vol. IV (J. Venter, C. Fraser, and J. Lindstrom, eds.), pp. 21–57, Alan R. Liss, New York.

    Google Scholar 

  • Lindstrom, J., 1985b, Techniques for studying the biochemistry and cell biology of receptors, in: Neurotransmitter Receptor Binding, (H. Yamamura, S. Enna, and M. Kuhar, eds.), pp. 123–152, Raven Press, New York.

    Google Scholar 

  • Lindstrom, J., Einarson, B., and Merlie, J., 1978, Immunization of rats with polypeptide chains from Torpedo acetylcholine receptor causes an autoimmune response to receptors in rat muscle, Proc. Natl. Acad. Sci. U.S.A. 75:769–773.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom, J., Merlie, J., and Yogeeswaran, B., 1979a, Biochemical properties of acetylcholine receptor subunits from Torpedo californica, Biochemistry 18:4465–4470.

    Article  CAS  Google Scholar 

  • Lindstrom, J., Walter, B., and Einarson, B., 1979b, Immunochemical similarities between subunits of acetylcholine receptors from Torpedo, Electrophorus, and mammalian muscle, Biochemistry 18:4470–4480.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom, J., Anholt, R., Einarson, B., Engel, A., Osame, M., and Montai, M., 1980a, Purification of acetylcholine receptors with functional cation channels and reconstitution into lipid vesicles, J. Biol. Chem. 255:8340–8350.

    PubMed  CAS  Google Scholar 

  • Lindstrom, J., Gullick, W., Conti-Tronconi, B. and Ellisman, M., 1980b, Proteolytic nicking of the acetylcholine receptor, Biochemistry 19:4791–4795.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom, J., Einarson, B., and Tzartos, S., 1981a, Production and assay of antibodies to acetylcholine receptors, Methods. Enzymol. 74:432–460.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom, J., Tzartos, S., and Gullick, B., 1981b, Structure and function of acetylcholine receptors studied using monoclonal antibodies, Ann. N.Y. Acad. Sci. 377:1–19.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom, J., Tzartos, S., Gullick, W., Hochschwender, S., Swanson, L., Sargent, P., Jacob, M., and Montai, M., 1983a, Use of monoclonal antibodies to study acetylcholine receptors from electric organs, muscle, and brain and the autoimmune response to receptor in myasthenia gravis, Cold Spring Harbor Symp. Quant. Biol. 48:89–99.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom, J., Cooper, J., and Swanson, L., 1983b, Purification of acetylcholine receptors from the muscles of Electrophorus electricus, Biochemistry 22:3796–3800.

    CAS  Google Scholar 

  • Lindstrom, J., Criado, M., Hochschwender, S., Fox, L., and Sarin, V., 1984, Immunochemical tests of acetylcholine receptor subunit models, Nature 311:573–575.

    Article  PubMed  CAS  Google Scholar 

  • Luyten, W., Kallaris, K., Kyte, J., Heinemann, S., and Patrick, J., 1984, A model for the acetylcholine binding site of the acetylcholine receptor, Neurosci. Soc. Abstr. 212:10.

    Google Scholar 

  • McCormick, D., and Atassi, M., 1984, Localization and synthesis of the acetylcholine binding site in the alpha chain of the Torpedo californica acetylcholine receptor, Biochem. J. 224:995–1000.

    PubMed  CAS  Google Scholar 

  • Merlie, P., and Lindstrom, J., 1983, Assembly in vivo of mouse muscle acetylcholine receptor: Identification of an alpha subunit species which may be an assembly intermediate, Cell 34:747–757.

    Article  PubMed  CAS  Google Scholar 

  • Merlie, J., Sebbane, R., Tzartos, S., and Lindstrom, J., 1982, Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle cells, J. Biol. Chem. 257:2694–2701.

    PubMed  CAS  Google Scholar 

  • Merlie, J., Sebbane, R., Gardner, S., and Lindstrom, J., 1983a, Regulation of acetylcholine receptor gene expression: Molecular cloning of a cDNA specific for alpha subunit of the receptor from the mouse muscle cell line BC3H-1, Proc. Natl. Acad. Sci. U.S.A. 80:3845–3849.

    Article  PubMed  CAS  Google Scholar 

  • Merlie, J., Sebbane, R., Gardner, S., Olson, E., and Lindstrom, J., 1983b, The regulation of acetylcholine receptor expression in mammalian muscle, Cold Spring Harbor Symp. Quant. Biol. 48:135–146.

    Article  PubMed  CAS  Google Scholar 

  • Merlie, J., Isenberg, K., Russell, S., and Sanes, J., 1984, Denervation supersensitivity in skeletal muscle: Analysis with a cloned cDNA probe, J. Cell Biol. 99:332–335.

    Article  PubMed  CAS  Google Scholar 

  • Mihovilovic, M., and Richman, D., 1984, Modification of alpha bungarotoxin and cholinergic ligand binding properties of Torpedo acetylcholine receptor by a monoclonal anti-acetylcholine receptor antibody, J. Biol Chem. 259:15051–15059.

    PubMed  CAS  Google Scholar 

  • Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M., and Numa, S., 1984, Expression of functional acetylcholine receptor from cloned cDNAs, Nature 307:604–608.

    Article  PubMed  CAS  Google Scholar 

  • Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K., Fujita, Y., Fukuda K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M., and Numa, S., 1985, Location of functional regions of acetylcholine receptor alpha subunit by site-directed mutagenesis, Nature 313:364–369.

    Article  PubMed  CAS  Google Scholar 

  • Mochley-Rosen, C., and Fuchs, S., 1981, Monoclonal anti-acetylcholine receptor antibodies directed against the cholinergic binding site, Biochemistry 20:5920–5924.

    Article  Google Scholar 

  • Neumann, D., Fridkin, M., and Fuchs, S., 1984, Anti-acetylcholine receptor response achieved by immunization with a synthetic peptide from the receptor sequence, Biochim. Biophys. Res. Commun. 121:673–679.

    Article  CAS  Google Scholar 

  • Nitkin, R., Wallace, B., Spira, M., Godfrey, E., and McMahan, V., 1983, Molecular components of the synaptic basal lamina that direct differentiation of regenerating neuromuscular junctions, Cold Spring Harbor Symp. Quant. Biol. 48:653–666.

    Article  PubMed  CAS  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T., and Numa, S., 1982, Primary structure of alpha subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence, Nature 299:793–797.

    Article  PubMed  CAS  Google Scholar 

  • Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotani, S., Kanayo, T., Hirose, T., Inayama, S., and Numa, S., 1983a, Cloning and sequence analysis of calf cDNA and human genomic DNA encoding alpha subunit precursor of muscle acetylcholine receptor, Nature 305:818–823.

    Article  PubMed  CAS  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Tak-ashima, H., Inayama, S., Miyata, T., and Numa, S., 1983b, Structural homology of Torpedo calif ornica acetylcholine receptor subunits, Nature 302:528–532.

    Article  PubMed  CAS  Google Scholar 

  • Numa, S., Noda, M. Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., and Kykyotani, S., 1983, Molecular structure of the nicotinic acetylcholine receptor, Cold Spring Harbor Symp. Quant. Biol. 48:57–71.

    Article  PubMed  CAS  Google Scholar 

  • Olson, E., Glaser, L., Merlie, J., Sebbane, R., and Lindstrom, J., 1983a, Regulation of surface expression of acetylcholine receptors in response to serum and cell growth in the BC3H1 muscle cell line, J. Biol. Chem. 258:13946–13953.

    PubMed  CAS  Google Scholar 

  • Olson, E., Glaser, L., Merlie, J., and Lindstrom, J., 1983b, Expression of acetylcholine receptor alpha subunit mRNA during differentiation of the BC3H1 muscle cell lines, J. Biol. Chem. 259:3330–3336.

    Google Scholar 

  • Olson, E., Glaser, L., and Merlie, J., 1984, Alpha and beta subunits of the nicotinic acetylcholine receptor contain covalently bound lipid, J. Biol. Chem. 259:5364–5367.

    PubMed  CAS  Google Scholar 

  • Palfreyman, J., Aitcheson, T., and Taylor, P., 1984, Guidelines for the production of polypeptide specific antisera using small synthetic oligopeptides as immunogens, J. Immunol. Methods. 75:383–393.

    Article  PubMed  CAS  Google Scholar 

  • Patrick, J., and Lindstrom, J., 1973, Autoimmune response to acetylcholine receptor, Science 180:871–872.

    Article  PubMed  CAS  Google Scholar 

  • Plumer, R., Fels, G., and Maelicke, A., 1984, Antibodies against preselected peptide to map functional sites on the acetylcholine receptor, FEBS Lett. 178:204–208.

    Article  PubMed  CAS  Google Scholar 

  • Pumplin, D., and Fambrough, D., 1982, Turnover of acetylcholine receptors in skeletal muscle, Anna. Rev. Physiol. 44:319–335.

    Article  CAS  Google Scholar 

  • Raftery, M., Hunkapillar, M., Strader, D., and Hood, L., 1980, Acetylcholine receptor: Complex of homologous subunits, Science 208:1454–1457.

    Article  PubMed  CAS  Google Scholar 

  • Ratnam, M., and Lindstrom, J., 1984, Structural features of the nicotinic acetylcholine receptor revealed by antibodies to synthetic peptides, Biochem. Biophys. Res. Commun. 122:1225–1233.

    Article  PubMed  CAS  Google Scholar 

  • Rees-Smith, B., and Buckland, P., 1982, Structure function relations of the thyrotropin receptor, Ciba Found. Symp. 90:114–125.

    Google Scholar 

  • Reynolds, J., and Karlin, A., 1978, Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica, Biochemistry 17:2035–2038.

    Article  CAS  Google Scholar 

  • Salpeter, M., and Harris, M., 1983, Distribution and turnover rate of acetylcholine receptors throughout the junction folds at a vertebrate neuromuscular junction, J. Cell Biol. 96:1781–1785.

    Article  PubMed  CAS  Google Scholar 

  • Sargent, P., Hedges, B., Tsavaler, L., Clemmons, L., Tzartos, S., and Lindstrom, J., 1983, The structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscles revealed by crossreacting monoclonal antibodies, J. Cell Biol. 98:609–618.

    Article  Google Scholar 

  • Sealock, R., Wray, B., and Froehner, S., 1984, Ultrastructural localization of the M r 43,000 protein and the acetylcholine receptor in Torpedo postsynaptic membranes using monoclonal antibodies, J. Cell Biol. 98:2239–2244.

    Article  PubMed  CAS  Google Scholar 

  • Seed, B., 1982, Diazotizable arylamine cellulose papers for the coupling and hybridization of nucleic acids, Nucleic Acids. Res. 10:1799–1810.

    Article  PubMed  CAS  Google Scholar 

  • Takai, T., Noda, M., Furutani, Y., Takahashi, H., Notake, M., Shimizu, S., Kayano, T., Tanabe, T., Tanaka, K., Hirose, T., Inayama, S., and Numa, S., 1984, Primary structure of gamma subunit precursor of calf-muscle acetylcholine receptor deduced from the cDNA sequence, Eur. J. Biochem. 143:109–115.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, T., Noda, M., Furutani, Y., Takai, T., Takahashi, H., Tanaka, K., Hirose, T., Inayama, S., and Numa, S., 1984, Primary structure of beta subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence, Eur. J. Biochem. 144:11–17.

    Article  PubMed  CAS  Google Scholar 

  • Towbin, H., and Gordon, J., 1984, Immunoblotting and dot immunobinding: Current status and outlook, J. Immunol. Methods 72:313–340.

    Article  PubMed  CAS  Google Scholar 

  • Tzartos, S., and Lindstrom, J., 1980, Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits, Proc. Natl. Acad. Sci. U.S.A. 77:755–759.

    Article  PubMed  CAS  Google Scholar 

  • Tzartos, S., Rand, D., Einarson, B., and Lindstrom, J., 1981, Mapping of surface structures on Electrophorus acetylcholine receptor using monoclonal antibodies, J. Biol. Chem. 256:8635–8645.

    PubMed  CAS  Google Scholar 

  • Tzartos, S., Seybold, M., and Lindstrom, J., 1982, Specificity of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies, Proc. Natl, Acad. Sci. U.S.A. 79:188–192.

    Article  CAS  Google Scholar 

  • Tzartos, S., Langeberg, L., Hochschwender, S., and Lindstrom, J., 1983, Demonstration of a main immunogenic region on acetylcholine receptors from human muscle using monoclonal antibodies to human receptor, FEBS Lett. 158:116–118.

    Article  PubMed  CAS  Google Scholar 

  • Vandlen, R., Wilson, C., Eisenach, J., and Raftery, M., 1979, Studies of the composition of purified Torpedo californica acetylcholine receptor and its subunits, Biochemistry 18:1845–1854.

    Article  PubMed  CAS  Google Scholar 

  • Venter, C., and Harrison, L. (eds.), 1984, Receptor Biochemistry and Methodology, Vol. 2, Receptor Purification Procedures, Alan R. Liss, New York.

    Google Scholar 

  • Venter, C., Fraser, C., and Lindstrom, J. (eds.), 1984, Receptor Biochemistry and Methodology, Vol. 4, Monoclonal and Anti-idiotypic Antibodies: Probes for Receptor Structure and Function, Alan R. Liss, New York.

    Google Scholar 

  • Walker, J. Boustead, C., and Witzemann, V., 1984, The 43K protein, V1, associated with acetylcholine receptor containing membrane fragments is an actin-binding protein, EMBO J. 3:2287–2290.

    PubMed  CAS  Google Scholar 

  • Wan, K., and Lindstrom, J., 1985, Effects of monoclonal antibodies on the function of acetylcholine receptors purified from Torpedo californica reconstituted into vesicles, Biochemistry, 24:1212-1221.

    Google Scholar 

  • Watters, D., and Maelicke, A., 1983, Organization of ligand binding sites at the acetylcholine receptor: A study with monoclonal antibodies, Biochemistry 22:1811–1819.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, I., Niman, H., Houghton, R., Cherenson, A., Connolly, M., and Lerner, R., 1984, The structure of an antigenic determinant of a protein, Cell 37:767–778.

    Article  PubMed  CAS  Google Scholar 

  • Young, R., and Davis, R., 1983, Efficient isolation of genes by using antibody probes, Proc. Natl. Acad. Sci. U.S.A. 80:1194–1198.

    Article  PubMed  CAS  Google Scholar 

  • Young, C., Schmitz, H., and Atassi, M., 1983, Antibodies with preselected specificities to protein regions evoked by immunization with free synthetic peptides, Immunol. Commun. 12:419–428.

    PubMed  CAS  Google Scholar 

  • Young, E., Ralston, E., Blake, J., Ramachandran, J., Hall, Z., and Stroud, R., 1985, Topological mapping of acetylcholine receptor: Evidence for a model with five transmembrane segments and a cytoplasmic COOH-terminal peptide, Proc. Natl. Acad. Sci. U.S.A. 82:626–630.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lindstrom, J. (1986). Immunologic Analysis of the Acetylcholine Receptor. In: Miller, C. (eds) Ion Channel Reconstitution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1361-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1361-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1363-3

  • Online ISBN: 978-1-4757-1361-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics