Skip to main content

Fusion of Liposomes to Planar Bilayers

  • Chapter
Ion Channel Reconstitution

Abstract

During the late 1970s and early 1980s, methods to reconstitute integral membrane channel-forming proteins into planar membranes were developed. There are now two basic strategies. The first is to fuse vesicles that contain channels to preformed phospholipid planar membranes (Miller and Racker, 1976; Cohen et al., 1980; Akabas et al., 1984). The vesicles can be those obtained by the usual methods of cell fractionation—homogenization and centrifugation— and are often referred to as “native” vesicles, or they can be phospholipid vesicles that have had a purified channel incorporated into the vesicular membrane, known as “artificial” vesicles. The second strategy is to incorporate membrane channels into monolayers derived from vesicles (Verger and Pattus, 1976; Pattus et al., 1981; Schindler, 1979) and to form bilayers with functional channels from these monolayers (Schindler and Rosenbusch, 1978; Schindler and Quast, 1980; Nelson et al., 1980; Vodyanoy and Murphy, 1982; Coronado and Latorre, 1983). Either native or artificial vesicles can be used to form the monolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akabas, M. H., Cohen, F. S., and Finkelstein, A., 1984, Separation of the osmotically driven fusion event from vesicle-planar membrane attachment in a model system for exocytosis, J. Cell. Biol. 98:1063–1071.

    Article  PubMed  CAS  Google Scholar 

  • Bell, J., and Miller, C., 1984, Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum, Biophys. J. 45:279–287.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F. S, and Akabas, M. H., 1982, The nature of the region of contact between fusing membranes, Biophys. J. 37:26a.

    Article  Google Scholar 

  • Cohen, F. S., Zimmerberg, J., and Finkelstein, A., 1980, Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane, J. Gen. Physiol. 75:251–270.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F. S., Akabas, M. H., and Finkelstein, A., 1982, Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane, Science 217:458–460.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F. S., Akabas, M. H., Zimmerberg, J., and Finkelstein, A., 1984, Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes, J. Cell Biol. 98:1054–1062.

    Article  PubMed  CAS  Google Scholar 

  • Coronado, R., and Latorre, R. 1982, Detection of K+ and Cl channels from calf cardiac sarcolemma in planar lipid bilayer membranes, Nature 298:849–852.

    Article  PubMed  CAS  Google Scholar 

  • Coronado, R., and Latorre, R., 1983, Phospholipid bilayers made from monolayers on patch-clamp pipettes, Biophys. J. 43:231–236.

    Article  PubMed  CAS  Google Scholar 

  • Coronado, R., Huganir, R., and Mautner, G., 1981, A K+-selective conductance sensitive to choli-nergic antagonists obtained by fusion of axonal membrane vesicles to planar bilayers, FEBS Lett. 131:355-358.

    Google Scholar 

  • Coronado, R., Latorre, R., and Mautner, H. G., 1984, Single potassium channels with delayed rectifier behavior from lobster axon membranes, Biophys. J. 45:289–299.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, B. E., Finkelstein, A., Forte, M., and Kung, C., 1984, Voltage-dependent calcium channels from Paramecium cilia incorporated into planar lipid bilayers, Science 225:427–428.

    Article  PubMed  CAS  Google Scholar 

  • French, R. J., Worley, J. F. III, and Krueger, B. K., 1984, Voltage-dependent block by saxitoxin of sodium channels incorporated into planar lipid bilayers, Biophys. J. 45:301–310.

    Article  PubMed  CAS  Google Scholar 

  • Hanke, W., and Kaupp, U. B., 1984, Incorporation of ion channels from bovine rod outer segments into planar lipid bilayers, Biophys. J. 46:587–595.

    Article  PubMed  CAS  Google Scholar 

  • Hanke, W., and Miller, C., 1983, Single chloride channels from Torpedo electroplax: Activation by protons, J. Gen. Physiol. 82:25–45.

    Article  PubMed  CAS  Google Scholar 

  • Hanke, W., Eibl, H., and Boheim, G., 1981, A new method for membrane reconstitution: Fusion of protein-containing vesicles with planar bilayer membranes below lipid phase transition temperature, Biophys. Struct. Mech. 7:131–137.

    Article  PubMed  CAS  Google Scholar 

  • Hartshorne, R. P., Keller, B. U., Talvenheimo, J. A., Catterall, W. A., and Montai, M., 1985, Functional reconstitution of the purified brain sodium channel in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 82:240–244.

    Article  PubMed  CAS  Google Scholar 

  • Krueger, B. K., Worley, J. F. III, and French, R. J., 1983, Single sodium channels from rat brain incorporated into planar lipid bilayer membranes, Nature 303:172–175.

    Article  PubMed  CAS  Google Scholar 

  • Labarca, P., Coronado, R., and Miller, C., 1980, Thermodynamic and kinetic studies of the gating.

    Google Scholar 

  • behavior of a K+-selective channel from the sarcoplasmic reticulum membrane, J. Gen. Physiol. 76:397-424.

    Google Scholar 

  • Latorre, R., Vergara, C., and Hidalgo, C., 1982, Reconstitution in planar lipid bilayers of a Ca2+ — dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle, Proc. Natl. Acad. Sci. U.S.A. 79:805–809.

    Article  PubMed  CAS  Google Scholar 

  • Miller, C., and Racker, E., 1976, Ca2+-induced fusion of fragmented sarcoplasmic reticulum with artificial bilayers, J. Membr. Biol. 30:283–300.

    Article  PubMed  CAS  Google Scholar 

  • Moczydlowski, E., and Latorre, R., 1983, Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions, J. Gen. Physiol. 82:511–542.

    Article  PubMed  CAS  Google Scholar 

  • Moczydlowski, E., Garber, S. S., and Miller, C., 1984, Batrachotoxin-activated Na+ channels in planar lipid bilayers. Competition of tetrodotoxin block by Na+, J. Gen. Physiol. 84:665–686.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, N., Anholt, R., Lindstrom, J., and Montai, M., 1980, Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 77:3057–3061.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, M. T., French, R. J., and Krueger, B. K., 1984, Voltage-dependent calcium channels from brain incorporated into planar lipid bilayers, Nature 308:77–80.

    Article  PubMed  CAS  Google Scholar 

  • Pattus, F., Rothen, C., Streit, M., and Zahler, P., 1981, Further studies on the spreading of biomembranes at the air/water interface. Structure, composition, enzymatic activities of human erythrocyte and sarcoplasmic reticulum membrane films, Biochim. Biophys. Acta 647:29–39.

    Article  PubMed  CAS  Google Scholar 

  • Sariban-Sohraby, S., Latorre, R., Burg, M., Olans, L., and Benos, D., 1984, Amiloride-sensitive epithelial Na+ channels reconstituted into planar lipid bilayer membranes, Nature 308:80–82.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, H., 1979, Exchange and interactions between lipid layers at the surface of a liposome solution, Biochim. Biophys. Acta 555:316–336.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, H., and Quast, U., 1980, Functional acetylcholine receptor from Torpedo marmorata in planar membranes, Proc. Natl. Acad. Sci. U.S.A. 77:3052–3056.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, H., and Rosenbusch, J., 1978, Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 75:3751–3755.

    Article  PubMed  CAS  Google Scholar 

  • Verger, R., and Pattus, R., 1976, Spreading of membranes at the air-water interface, Chem. Phys. Lipids 16:285–291.

    Article  PubMed  CAS  Google Scholar 

  • Vodyanoy, V., and Murphy, R. B., 1982, Solvent-free lipid biomolecular membranes of large surface area, Biochim. Biophys. Acta 687:189–194.

    Article  PubMed  CAS  Google Scholar 

  • White, M. M., and Miller, C., 1979, A voltage-gated anion channel from the electric organ of Torpedo californica, J. Biol. Chem. 254:10161–10166.

    CAS  Google Scholar 

  • Young, T. M., and Young, J. D., 1984, Protein-mediated intermembrane contact facilitates fusion of lipid vesicles with planar bilayers, Biochim. Biophys. Acta 775:441–445.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerberg, J., Cohen, F. S., and Finkelstein, A., 1980a, Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. I. Discharge of vesicular contents across the planar membrane, J. Gen. Physiol. 75:241–250.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerberg, J., Cohen, F. S., and Finkelstein, A., 1980b, Micromolar Ca2+ stimulates fusion of lipid vesicles with planar bilayers containing a calcium-binding protein, Science 210:906–908.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, F.S. (1986). Fusion of Liposomes to Planar Bilayers. In: Miller, C. (eds) Ion Channel Reconstitution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1361-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1361-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1363-3

  • Online ISBN: 978-1-4757-1361-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics